
Dynamic traffic control of

free-navigating

Automatic Guided Vehicles

master’s thesis

R.M. de Groot

July 1997
(September 1996 - July 1997)

SPA-97-008

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

Department of Computer Science
Group Systems Programming and Architecture (SPA)

Supervisors: dr A.L. Schoute
ir R.J. Mantel
dr ir A.J. de Graaf (FROG)
prof. dr ir M.F.A.M. van Maarseveen

University of Twente
Department of

Computer Science

Dynamic traff ic control of free navigating automatic guided vehicles

- 3 -

Samenvatting

In transportsystemen met meerdere automatisch gestuurde voertuigen moet een
verkeerscontrole zorgen dat conflicten efficient worden opgelost. In dit doctoraalverslag
worden theorie en architectuur gepresenteerd van een dynamische verkeerscontrole. Voor het
oplossen van locale confli cten worden oplossingen gegeven die de doorstroom van het systeem
verhogen en de gemiddelde verloren tijd door conflicten verlagen. Oplossingen voor globale
conflicterende verkeersstromen zijn gebaseerd op heuristieken en kennisregels als in een
kunstmatig intelligent expertsysteem. Een simulatiepakket is gebouwd om de ideëen in
praktische vorm zichtbaar te maken.

Trefwoorden: AGV transportsysteem, dynamische verkeerscontrole, expertsysteem, heuristiek,
kunstmatige intelligentie, optimalisatie

Dynamic traffic control of free navigating automatic guided vehicles

- 4 -

Abstract

In transport systems with multiple automatic guided vehicles a traffic control must see to it that
conflicts are resolved efficiently. In this thesis theory and architecture for a dynamic traffic
controller are presented. Solutions that solve local conflicts are provided. These solutions for
local conflicts increase throughput of the system and decrease average loss of time by conflicts.
Solutions for globally conflicting traffic streams are based on heuristics and knowledge rules
like in artificially intelligent expert systems. A simulation tool was build to visualise the ideas
in a practical environment.

Keywords: AGV transport systems, dynamic traffic control, expert systems, heuristics, artificial
intelligence, optimisation

Dynamic traffic control of free navigating automatic guided vehicles

- 5 -

Contents

Preface 9

1 Introduction 10

1.1 Structure of an AGV system 11
1.1.1 Jobs 12
1.1.2 Site layout 12
1.1.3 Logistic planner 12
1.1.4 Path planner 12
1.1.5 Flow control 13
1.1.6 Traffic control 13
1.1.7 Vehicle control 14

1.2 Concepts of AGV systems 14
1.2.1 Why not simply determine the optimum? 15
1.2.2 Static semaphores 15
1.2.3 Full autonomy 16
1.2.4 Dynamic traffic control 16

2 The model 18

2.1 Terms 18
2.2 Assumptions 18
2.3 Dynamic properties 19

2.3.1 Freedom of location 19
2.3.2 Resource allocation 19
2.3.3 Trajectory deviations in time and space 19
2.3.4 Run-time solution evaluation 19
2.3.5 Early collision prediction 19
2.3.6 Programmable cost functions 20
2.3.7 Regular deadlock 20
2.3.8 Dynamic deadlock 20

3 Local traffic optimisation 22

3.1 Bilateral conflict resolution 22
3.2 Collision diagrams 23
3.3 Mutual deadlock 23
3.4 Blocking 24
3.5 Advancing 26

3.5.1 Influence of relative arrival distance on blocking and advancing 27
3.6 Roundabout 28

3.6.1 Full roundabout 28
3.6.2 Shrunken roundabout 31
3.6.3 Advancing roundabout 32

3.7 Swirl 32
3.8 Single-sided deviation 33

3.8.1 Autonomous deviation 33
3.9 Comparing methods 34

Dynamic traffic control of free navigating automatic guided vehicles

- 6 -

4 Global traff ic optimisation 40

4.1 Field effects 40
4.1.1 Motion field 41
4.1.2 Neighbour request 43

4.2 Vehicle streams 43
4.2.1 Crossing streams 44
4.2.2 Batch 44
4.2.3 Carousel 45
4.2.4 Twist 46
4.2.5 Conclusions on crossing streams 47

4.3 Multivehicle co-ordination 48
4.4 Flow control 49

5 Architecture 51

5.1 Functional model 52
5.2 Object model 54
5.3 Dynamic traff ic controller algorithm 61
5.4 Computational complexity 61
5.5 Centralised vs. distr ibuted 63
5.6 Real-time aspects 63
5.7 Parallel processing 63

6 Simulation 65

6.1 Roadplan v2.0 65
6.2 RoadPlan compatibility 65
6.3 Implementation 66

6.3.1 Not C++ 66
6.3.2 Not Java 66
6.3.3 Not Tcl 66
6.3.4 Python 66
6.3.5 The model 67

6.4 Evaluation 68
6.4.1 The Thesis map 68

6.5 Simulation results 72

7 Conclusions 74

7.1 Recommendations 76

Literature 78

Dynamic traff ic control of free navigating automatic guided vehicles

- 7 -

Appendix A - Proofs and derivations 80

A.1 Roundabout 80
A.1.1 Time-loss and correctness full roundabout 80
A.1.2 Shrunken roundabout 83
A.1.3 Advancing roundabout 84

A.2 Time-loss and correctness blocking 85
A.2.1 Rectangular vehicles 85
A.2.2 Circular vehicles 86

A.3 Time-loss and correctness advancing 86
A.3.1 Circular vehicles 86
A.3.2 Rectangular vehicles 87

A.3.2.1 Advancing equals blocking 88

Appendix B - Manuals 89

B.1 Programmer’ s manual to Roadplan v2.0 89
B.1.1 Python introductory course 89
B.1.2 Programming model 90
B.1.3 Source structure 91

B.1.3.1 Start-up and registration 92
B.1.3.2 The window manager (GUI) 92
B.1.3.3 The simulation code 92
B.1.3.4 Implementation of advancing 93
B.1.3.5 The overlap test functions 93
B.1.3.6 Map 94
B.1.3.7 Vehicle 94
B.1.3.8 Path 94
B.1.3.9 Positions and offsets 94
B.1.3.10 File I/O 94
B.1.3.11 Screen display 95
B.1.3.12 Other GUI tools 95

B.2 User manual to Roadplan v2.0 95

Index 97

L ist of f igures
Figure 1: Structure of AGV system..11
Figure 2: Example of a path generated by a path planner ..13
Figure 3: Matrix element grid..15
Figure 4: Deadlock in a resource-allocation graph..20
Figure 5: Dynamic deadlock..21
Figure 6: The crossing model ..22
Figure 7: Collision diagram of disc-shaped crossing vehicles..23
Figure 8: Mutual deadlock ..23
Figure 9: Blocking: critical area ...24
Figure 10: Collision diagram of blocking with rectangular vehicles...25
Figure 11: Advancing and blocking..26
Figure 12: Advancing if a³ p/2 for rectangular vehicles...27
Figure 13: Advancing if a³ p/2 for circular vehicles..27
Figure 14: Relative arr ival distance of blocking and advancing...27
Figure 15: Roundabout ...28
Figure 16: Configuration j on roundabout with minimal R.. 29
Figure 17: Rotation and translation of roundabout ..29
Figure 18: Construction of roundabout with arr ival distances d1 and d2...30
Figure 19: Shrunken roundabout ...31

Dynamic traffic control of free navigating automatic guided vehicles

- 8 -

Figure 20: Advancing roundabout ... 32
Figure 21: Three swirl states ... 33
Figure 22: Optimal deviation for single-sided deviation... 33
Figure 23: Deviation to avoid obstacles... 34
Figure 24: Performance of methods #1 .. 35
Figure 25: Performance of methods #2 .. 36
Figure 26: Performance of methods #3 .. 36
Figure 27: Performance of methods #4 .. 37
Figure 28: Performance of methods #5 .. 38
Figure 29: Performance of methods #6 .. 38
Figure 30: Performance of methods #7 .. 39
Figure 31: Field effects ... 40
Figure 32: Neighbourhood of a conflict between vehicles A and B ... 41
Figure 33: Gradient of goodness of motion field assuming normalised vectors 42
Figure 34: Inserting and removing vehicles in a stream .. 44
Figure 35: Batch streaming ... 44
Figure 36: Carousel streaming.. 45
Figure 37: Timing of twist streaming ... 46
Figure 38: Twist streaming.. 47
Figure 39: Comparing streaming #1.. 48
Figure 40: Comparing streaming #2.. 48
Figure 41: Waiting or turning?.. 50
Figure 42: Controller architecture .. 52
Figure 43: Functional model ... 54
Figure 44: OMT Guide.. 55
Figure 45: Modelling shapes ... 56
Figure 46: Modelling vehicles and areas ... 57
Figure 47: Modelling paths and segments.. 58
Figure 48: Modelling rules.. 59
Figure 49: Modelling map, field effect methods and multivehicle co-ordination.................................... 60
Figure 50: Simulation thesis map step 1... 69
Figure 51: Simulation thesis map step 2... 69
Figure 52: Simulation thesis map step 6... 70
Figure 53: Simulation thesis map step 13... 70
Figure 54: Simulation thesis map step 18... 71
Figure 55: Configuration of circular vehicles .. 80
Figure 56: Configuration of rectangular vehicles... 81
Figure 57: Construction of roundabout.. 82
Figure 58: Construction shrunken roundabout... 83
Figure 59: Construction blocking .. 85
Figure 60: Configuration diagram... 86
Figure 61: Width axis.. 86
Figure 62: Advancing with rectangular vehicles .. 87
Figure 63: Advancing equals blocking... 88

List of tables
Table 1: Implementation test maps... 68
Table 2: Maps with right crossings of convoys ... 68
Table 3: Complex simulation maps .. 68
Table 4: Results of advancing roundabout ... 84
Table 5: Roadplan 2 modules .. 91

Dynamic traff ic control of free navigating automatic guided vehicles

- 9 -

Preface

Ever since I was a small boy I have been fascinated by computers. Those mysterious machines,
you could play Ghostbusters on them (though I had no idea what it looked like), print your
name a thousand times. It was the first thing my father did not - and I did - understand. It was
no more than natural for me to go and study Computer Sciences. During my study I soon
learned that computer sciences is not at all about programming computers. Later, I discovered
that it is mostly about bringing order in chaos. Like the sciences of nature, my science is a true
science. One about something intangible called information. This thesis is the result of my
graduation project in Computer Sciences (Informatica) at the University of Twente in
Enschede, the Netherlands.

Ideas li ke emergent behaviour, the subsumption architecture of Brooks, the neural network
theory, the Terminator movies, the Star Trek Borgs were reasons why I felt so attracted to
robotics and especially the high-level control, which inhibit intelligence, of these systems. This,
and earlier experiences with object oriented shoot ‘em up game modelli ng, made me believe
that complex systems of co-ordinating robots could and should not be known completely. With
this project, a successor of the Mobile Autonomous Robot Twente (MART) project, I hope to
have created the start of a new era in the multiagent research at Twente.

Throughout this project, my first supervisor, dr. A.L. Schoute, was the rope that kept me from
going orbital. His valuable comments, remarks and suggestions have given this work the
solidity that I feel it has now. Perhaps only during my graduation project did I learn what
science is. For this I would li ke to thank him especially.
 My thanks further go to ir. R.J. Mantel, dr.ir. A.J. de Graaf and prof.dr.ir. M.F.A.M. van
Maarseveen who all contributed in their way. I hope they enjoyed working with me as much as
I enjoyed working with them.
 To the guys at the lab, especially Rene (see you in Venlo!), Daniël, Simon, Ties, Alexander,
Dennis, Norman, Erwin and Jos: I enjoyed chatting, lunching and drinking coffee (you are
responsible for that last thing!). Special thanks go to Erwin for providing such a wonderfully
fast mysterious machine when I needed one most.
 Not having anything to do with my thesis, I would still li ke to thank everyone else in
Enschede and Swalmen for making it such a great time!

Special love goes to Anke, my beloved girl for almost four years now. She made me realise that
there is a li fe after graduation and a room can be cleaned sometimes. To my father and mother,
Charles and Marianne, for informing me about the world and loving me. I love you. To my
brother Leon, may he fare well by his own choices.

Richard Michel de Groot
July 1997, Enschede

Dynamic traff ic control of free navigating automatic guided vehicles

- 10 -

1 Introduction

Today's highly dynamic and complex economy demands companies to be very flexible. In large
production and logistic environments this mostly means the ability to achieve enormous peak
and high overall capacity and the ability to reflect changes of the organisation or outdoor world
quickly in the production process. A shift to more general-purpose machines li ke assembly
robots is clearly visible. These general-purpose machines can, in theory, more readily be
adapted to changes in the production process. However, flexible production demands flexible
forms of internal logistics. Transport systems using free-ranging multiple automatic guided
vehicles (AGV) meet this demand.

The acronym AGV has two almost similar meanings, both of which are frequently used. The
first is Automatic Guided Vehicle, which means we are dealing with computer guided vehicles.
No human being or animal has direct or (somewhat) indirect control over the vehicle.
 The second meaning is Autonomous Guided Vehicle. In this sense an AGV is a vehicle that,
through the use of local 'intelligence', determines its own behaviour. Again, the vehicle is
computer controlled, but this time the vehicle's behaviour is determined by an independent
computer. This computer needs not to be on-board of the AGV itself.
 The distinction is mostly important in the way the vehicles interact: the first variant does not
communicate very much but has a central processing computer, the second variant makes use of
heavy communication but has distributed processing power. In most of this document the
difference between automatic and autonomous or between on-board and remote is irrelevant.

The word free-ranging means the AGVs are not bound to a rails-li ke medium. Instead, the
AGVs can access the entire factory floor. This is a necessary condition for a flexible AGV
transport system since it allows a change of factory layout without having to change the AGV
medium.

This project is a spin-off of the MART (Mobile Autonomous Robot Twente) project [li t. 20 &
21]. In the MART project research was done to design 'the factory of the future'. In this factory
multiple robots each capable of free navigation are used. This is a typical AGV transport
system. Given a factory layout the entire logistics should be computerised. The factory layout is
a map of immobile obstacles, free spaces, production facilities and so on. A part of this
computerised system is the traff ic controller. The traff ic controller must control behaviour of
AGVs in respect of other AGVs. One AGV (with a top mounted robot arm) has actually been
build; the rest has been simulated in software [lit. 5 & 6].

The entire computerised system must guarantee efficiency in terms of time and energy
consumption, in-order delivery, continuous throughput, deadlock and starvation avoidance or
resolvement, robustness to unexpected situations and errors and safety of cargo, equipment and
people inside the facility.
 While several important sub-systems can be identified in the transport system, traff ic control
is perhaps the most important because it alone guarantees safety and is for a large part
responsible for efficiency of time and energy.

In this document we introduce a new traff ic control strategy that realises less loss of time and
energy and more flexible behaviour in exceptional circumstances. This strategy depends on
local trajectory deviations in time and space which are based on the use of knowledge,
expectations and reasoning. Its place among and interaction with the other sub-systems in the
AGV system wil l be discussed. Some specific knowledge rules within a general framework are
presented and general ideas about multiple vehicles are explained.

Dynamic traff ic control of free navigating automatic guided vehicles

- 11 -

To demonstrate the importance of this research, a small excerpt from the 'Centrum Transport
Technologie Annual report 1996' [li t. 19] is taken (translated from Dutch):

"The Smagic project (SMarter Automated Guidance of AGVs to Increase
Capacity) aims to increase the efficiency of AGVs per square meter of terminal
which must lead to an unmanned transport system for container transport which is
suitable for the transport of containers on the entire 'Maasvlakte'. This has to be
realised by improving crossing AGV-traff ic, enabling convoy traff ic of AGVs
and the abil ity to simply merge two streams of AGVs to one."

1.1 Structure of an AGV system

logistic plannerjobs

tasks task state

congestion
stateshortest

paths

planned
paths

executed
paths

commands vehicle
state

path plannerlayout

flow control

traff ic control

AGV control

Figure 1: Structure of AGV system

An AGV system consists of several important sub-systems. Figure 1 shows the basic design of
such a system. Note the several backward relations in the structure. These are used by the
planners and controllers to update and re-evaluate results. Each sub-system wil l be discussed
shortly.

Dynamic traff ic control of free navigating automatic guided vehicles

- 12 -

1.1.1 Jobs

This is database of the jobs that must be done by the AGV system. It contains job descriptions
at a very high level. The jobs are interpreted by the logistic planner and transformed into tasks
which can be carried out by vehicles.

1.1.2 Site layout

This is a passive part of the system holding a model of the site's environment. Usually this is a
2-dimensional map describing accessible and inaccessible areas and production points and so
on. The layout of the site is not fixed and can change in time. Changes in the production system
are made by changing the layout database in a controlled way.

An area is a part of the layout which is separated from the rest of the layout with a specific goal
in mind. To enhance later data processing a distinction must be made between several kinds of
areas:
1. Preferred area: this area is primarily meant for access by moving vehicles, for example

roads
2. Free area: an area not primarily meant for vehicle access, but still always accessible, for

example parking lots
3. Reserved area: an area meant for the storage of cargo or a production point, which should

only be used if explicitly needed or in case of an emergency, for example container storage
places which are not always filled

4. Occupied area: those areas that can never be accessed by vehicles, for example walls

A vehicle could be on any allowed location in the map and is not restricted to predefined one-
dimensional paths. Note that actual paths need not be given in the factory layout, though some
preferred paths could be inserted for whatever reason. A path is a safe way to move from one
point to another if ignoring other vehicles and exceptional situations. A path is abstract though
they are often represented in the real world by roads.

1.1.3 Logistic planner

The logistic planner derives tasks from jobs. A task is one logistic action that needs to be done,
for example moving a container from A to B.
 The logistic planner should produce tasks so that the overall logistic process can continue
smoothly without major disturbances. A very important aspect is in-order delivery of cargo to
specific places in the system.

The logistic planner has no real notion of location. It assigns a vehicle or number of vehicles to
a cargo source and destination. The path planner fills in the details of the real, physical path
from current position to source to destination. Note that a logistic planner is concerned with
(estimated) delivery times.

1.1.4 Path planner

The path planner should produce an (near-)optimal path for each vehicle in the system given the
layout, current vehicle positions and vehicle goals. The computational complexity for a planner
(working on a 2-dimensional plane) without multivehicle co-ordination1 is high. Such a planner
with multivehicle co-ordination even has a much greater complexity and is discussed in section
1.2.1. It is not likely to become feasible within the next couple of years.

1 A planner with multivehicle coordination is a planner which takes into account the possibili ty of conflicting vehicles.

Dynamic traff ic control of free navigating automatic guided vehicles

- 13 -

Fortunately, relatively efficient algorithms exist for speed independent path planning.
Combined with the fact that path planning usually needs not to be refreshed often it suff ices.

segment 1

segment 3

segment 2

Figure 2: Example of a path generated by a path planner

The path a path planner returns can be divided in several segments2. Each segment has certain
properties that are useful to be known. Examples of segments are straight segments, which are
easy to understand and analyse, or curved segments, which have a constant curvature. Since the
planner does not correct for possible conflicts in the future, the segments do not include speed
profiles. In figure 2 an example of a path consisting of three segments is shown.

As long as a vehicle has no confli cts with other vehicles, the path planner does not need to be
invoked again. Sooner or later however the vehicles will be disturbed by crossings or network
congestion. At this point the path planner may start replanning for the current situation to
produce a new, possibly more effective, set of planned paths.

1.1.5 Flow control

The flow control handles deadlock resolution and prevention and network congestion resolution
and prevention.
 The flow control should reroute traff ic via alternative paths whenever a certain area becomes
too crowded. An area is too crowded if the transit time in that area is much larger than usual or
if danger of deadlock exists. This wil l also be referred to as clustering.
 Another reason to reroute is for example maximum capacity of a bridge which could be
exceeded.
 The flow control should reroute vehicles at such moments so they wil l follow different paths
than before. To do this the flow control can replan the entire path for a vehicle or use the
shortest alternative path produced by the path planner (which is done by connecting existing
segments). The second option is preferred because of its lower computational complexity and
smaller functional overlap of path planner and flow control.
Note that this part is often included in the traff ic control. However, flow control is so different
from traff ic control that it deserves to be a separate part. Deadlock control and network
congestion control are based on the prevention of conflicts while traff ic control is based on
resolving existing conflicts.

1.1.6 Traffic control

Traff ic control is concerned with the quick and efficient resolution of local traff ic problems.
These occur at crossings, loading and unloading areas or in traff ic stream creation, merging and
demerging. Merging is the process which joins two traff ic streams into one. Demerging is the
reversed process.

2 A segment is a part of a path with certain properties so that it can be distinguished from other segments. For example, a straight
piece of the path is called a segment and a bend is also called a segment. Together they form a path.

Dynamic traff ic control of free navigating automatic guided vehicles

- 14 -

The functionality of the traff ic control can be done quite successfully on a local basis using
exact vehicle state and local area information. Using the plans and state of vehicles close to
each other the traff ic controller makes a short-term prediction. In this document we will show
that the tasks of a traff ic control can be done very efficient in this way, both when time or
energy consumption are concerned, or in general, when any one cost function is applied.

The traff ic control is ultimately responsible for the actual path which the AGVs should execute.
It mostly guards long-term plans from real world 'flaws' like coll ision danger. Whenever used it
is a major change to the plans created at higher, abstract layers. It is the only layer which needs
very accurate real world input, especially the vehicle state information li ke speed, direction and
position.

The traff ic control must be performed in hard real time3, li ke the vehicle control (discussed in
the next section), to guarantee safety. This makes it perhaps the most important sub-system:
without a decent traff ic control the entire AGV system is not safe and therefor cannot really be
used in a production environment.

This thesis mainly focuses on traff ic control with a bit of flow control. During the research it
turned out that despite the different requirements of flow control and traff ic control, the traff ic
control can take a number of precautions, like mutual deadlock prevention (see section 3.3),
that enhance the possibil ities of flow control.

1.1.7 Vehicle control

The different planners and controllers at the high-end of the system hierarchy have no real
notion of what a vehicle actually is. This is necessary otherwise their tasks would be incredibly
more difficult. We choose to map the abstract plans on the vehicle capabili ties by the vehicle
control.

This sub-system is tightly coupled to a vehicle. One capabili ty mapper per vehicle is optimal
from a functional point of view, but in practice one mapper per kind of vehicle is suff icient. For
the system as a whole this is not important: each mapper shares the same interface functionality
but with a slightly different implementation.

The capability mapper must interpret the abstract plan which needs to be executed and translate
it into a feasible plan for the vehicle. In other words: it must protect the vehicle from over-
enthusiastic plans. Major modifications need to be reported back to the traff ic control and
maybe even further upwards.

The feasible plan then is translated into actual engine control commands which allow the
vehicle to drive controlled.

1.2 Concepts of AGV systems

In this section the intractabili ty of an exact solution [lit. 9] of the traff ic control problem is
explained. Next, two concepts to solve the traff ic control problem are introduced: the static
semaphore approach and the full autonomy approach. These are discussed shortly to
demonstrate their strengths and weaknesses. Note that these approaches have already been
developed. They are mentioned here to provide background information. In section 1.2.4 the
dynamic traff ic control concept which was researched in this thesis is explained.

3 This is not true actually; only a very small part which detects and prevents very near-by collisions needs to be hard real-time. This
is discussed in more depth in section 5.6.

Dynamic traffic control of free navigating automatic guided vehicles

- 15 -

1.2.1 Why not simply determine the optimum?

The answer to this fundamental question consists of two parts: first, the computational
complexity of this problem is extremely large. Second, even if immense computational power
were available, the solution would have to be recalculated from start if even the slightest
deviation from the plan occurred (due to external events). So we have a huge practical and
economical problem this way.

Figure 3: Matr ix element grid

The computational complexity of this problem is exponential which will be shown by a small
example. Suppose we represent the factory layout by an mm× matrix. Each element represents
a fixed size square area in the layout. We have n vehicles inside the matrix. No object in the
matrix can leave it, no object outside the matrix can enter it. Each element can hold at most one
object (be it vehicle, wall or otherwise).
 Each vehicle is pointed towards one of eight directions (eight surrounding elements). In each
time interval it can move to one of the three elements ahead. It can also stand still and not move
at all. This represents a vehicle with limited steering capabilities, like most vehicles have. See
figure 3 for a sketch of the situation.

Suppose each vehicle has a goal which is at least m steps removed from its current location.
Each vehicle must choose a path of at least m steps. Each step the vehicle can choose one of the

four options. This gives m4 possibilities for one vehicle, so there are at least mn 4⋅ possibilities
to have all vehicles drive towards their goal.
 Whether or not a tested step is actually used in the final result is irrelevant for the
computational complexity. The possibility must still be considered, which takes time.
Unless heuristics are used, each possibility must be evaluated. This results in a problem which
is in class ΝΡ4 and therefor cannot be calculated in practice by a deterministic Turingmachine
[lit. 14] (of which the current computer model, the Von Neumann computer, has been derived).

Therefor, it is imperative to develop heuristics to tackle this problem [lit. 15-17].

1.2.2 Static semaphores

In the static semaphore concept non-moving semaphores are placed around critical areas in the
site layout. A critical area is an area which may only be accessed by at most one vehicle at a
time, otherwise a collision is possible. The semaphore can be compared to a traffic light. They
guard a specific area in which the presence of two or more vehicles could result in conflicts.
Only one vehicle can claim the semaphores to enter the critical area. Once it leaves the area, the
semaphores are released and can be used by another vehicle.

4 A problem of the class NP is of computational complexity larger than polynomial time.

Dynamic traff ic control of free navigating automatic guided vehicles

- 16 -

In a static context the critical areas can be derived because all possible paths vehicles can drive
on are known in advance. Because the number of semaphores has to be kept manageable, the
guarded area is usually taken rather large which results in inefficiency.

The strategy is simple and effective but offers li ttle flexibility because paths and semaphores
along the paths usually need to be fixed in order to work properly. Some modifications of paths
can be done during run-time or in advance by providing fixed alternatives, but others (mostly
involving exceptional circumstances) cannot be solved.

This approach also does not offer easy ways to implement streaming (multiple vehicles driving
closely together over the same path in the same direction) other than to use a fine-scale
blocking scheme with massive amounts of semaphores or forget about the semaphores all
together in these circumstances, which leaves the system without decent control..

Despite these problems, the static semaphore model is easy to implement, not too inefficient
and easy to analyse. The state can easily be presented by a resource-allocation graph [li t. 23] in
which resources are guarded areas and processes are vehicles. Much useful theory of operating
systems is known for resource-allocation graphs which can be applied to this model.

Traff ic control in the MART-project has been based on exclusion by semaphores [li t. 1-8]. The
same approach is used in practice on the ECT container terminal.

1.2.3 Full autonomy

This approach in which each vehicle is completely autonomous is highly flexible, but not suited
for efficiency due to lack of the global picture. In theory it is possible to create a good global
map from local data, but it involves very much communication and delays.

In this model it is practically impossible for vehicles to plan far ahead and this will often result
in situations where vehicles are forced to make sharp deviation angles, hard breaks or even
drive backwards. This is not always possible (for example, the container AGVs used at ECT
which measure .5.216 m× and can weigh up to several tens of tons are not easy to stop or steer,
let alone drive backwards).

These models do show extremely flexible, scalable and robust behaviour, which are all aspects
we would like to have in a dynamic traff ic control.

1.2.4 Dynamic traffic control

In this new approach, which we wil l discuss into depth in this document, a combination of
strategies is applied. The 'best of both' properties are selected. We do this by taking the static
exclusion model as a basis, because of its proven, well-known theoretical background. We keep
the semaphores, but create them only when needed during run-time. This serves as a fall -back
guarantee when all else fails.

Other more efficient ways to solve bilateral conflicts are added. The use of these methods
depends on a cost function which is evaluated continuously. The cost function also allows for
other factors besides time to be taken into account. For example, priority deliveries can be
assigned higher costs if delayed.

To preserve control over the system, central processing or extensive communication is used. If
extensive communication is not available, central processing is required and vice versa.
Because this is not important for the theoretical analysis, it will not be considered in most of
this document.

Dynamic traff ic control of free navigating automatic guided vehicles

- 17 -

Changes of plans have unknown effects on other vehicles. This is called the field effect.
Heuristics are added to control the field effect and related problems li ke streaming.
 To co-ordinate all the vehicles, a multiagent co-ordination heuristic must be used. This co-
ordination manages related conflicts.

It wil l be shown that this approach has several advantages over the other two li ke time and
energy preservation, flexibil ity of plans which can be changed at any point in time, better use of
available space, good scalabili ty, enlarged throughput and enhanced robustness for errors,
failures and difficult situations. Two disadvantages are increased conceptual complexity caused
by the need for real-time artificial intelligence (RT-AI), knowledge bases and heuristics and
increased computational complexity.

Dynamic traffic control of free navigating automatic guided vehicles

- 18 -

2 The model

To concentrate on the traffic control problems a model of the AGV system is needed. In chapter
1 a description of the complete system was already given. In section 2.1 some basic definitions
which are used throughout this document are explained. Section 2.2 lists the general
assumptions related to the physics of the vehicles. Section 2.3 describes several important
properties of a dynamic traffic control.

2.1 Terms

Confli ct A state where the plans of two or more vehicles require the same location at the same
moment.

Crossing A conflict where two vehicles need to cross.
Knowledge rule A rule which holds knowledge about the system. In this thesis it is the knowledge to

solve conflicts.
Layout A description of the site environment.
Map See Layout.
Path A sequence of location information to guide a vehicle. Speed can be determined later.
Plan The path a vehicle wants to follow.
Site The factory or transport facility where the AGV system is located.
Stream A number of vehicles following each other.
Trajectory A sequence of combinations of speed and location information to guide a vehicle.
Vehicle An AGV.

2.2 Assumptions

To model vehicles several assumptions had to be made.
· No physical aspects of vehicles are accounted for except size, location and direction.
· Throughout this document vehicles are modelled as 2-dimensional rectangles of size wl ´

unless explicitly mentioned otherwise.
· All vehicles travel at the same maximum speed and only lower their speed if explicitly

mentioned. Usually complete stops are used. However, many presented ideas can easily be
adapted to support second order optimisations of energy by lowering the speed over a
certain time interval instead of halting.

· Non-vehicle objects (obstacles) are ignored.
· The information on vehicles like location and direction is assumed to be always known

(complete), reliable (no errors) and consistent (no errors in time).
· The vehicles are comparable to co-operating agents. They provide reliable information and

try to follow plans whenever possible.
· The factory layout is a 2-dimensional plane. The layout contains several different areas as

described in section 1.1.2, some optimal paths (from start or added later), vehicles and their
plans.

· The location of objects in the layout is known exactly.
· External influences are not possible.

Dynamic traffic control of free navigating automatic guided vehicles

- 19 -

2.3 Dynamic properties

The following properties are inherent to the dynamic approach. They are presented now to give
the reader some insight in the problem.

2.3.1 Freedom of location

A dynamic traffic controller does not force a vehicle to remain on a path once it has been
chosen by for example the flow control. However, a vehicle should try to follow plans as close
as possible. Vehicles wandering aimlessly about are not efficient. Therefor only local deviations
are allowed but only if it is believed by the controller that it will lead to lower total costs.

2.3.2 Resource allocation

In a dynamic traffic controller each vehicle can only claim the space it actually uses at that
moment. This prevents the system from over-allocating resources by pre-allocation. Over-
allocation usually reduces the overall performance.

2.3.3 Trajectory deviations in time and space

Not only modifications of the trajectory in time are allowed, but also modifications in space
only or in space and time together. Different bilateral conflict resolution methods use different
modifications. For example, the blocking strategy in section 3.4 uses only time modifications,
while full roundabout (section 3.6.1) uses only spatial modifications. Swirl (section 3.7) is an
example which uses both.

2.3.4 Run-time solution evaluation

Depending on the current situation the traffic controller selects the best option available and
carries it out. It does not rely on one fixed solution to a problem. This allows it to produce
results that are at least as good as a static semaphore or full autonomy approach, simply because
these two can be incorporated in the dynamic controller.

Currently five major options are available for crossing5: blocking, advancing, roundabout, swirl
and single-sided deviation. All of these have their strong and weak points. For example, while
blocking is a straightforward solution that can be applied in about any situation, it is not
efficient. A roundabout on the other hand is on the average much more efficient but demands
extra room to be performed.

Streaming, which can be seen as a combined case of crossing and field effects, can be done
efficiently using advancing and roundabout. Merging and demerging of streams can also be
done using advancing.

2.3.5 Early collision prediction

Several knowledge rules in the dynamic traffic controller need to be warned of possible
collisions early otherwise they cannot provide a good solution. Therefor an important aspect of
the dynamic traffic controller is to predict collisions as far ahead as possible.

5 A crossing is a special case of bilateral conflict resolution where two vehicles try to cross each other.

Dynamic traff ic control of free navigating automatic guided vehicles

- 20 -

2.3.6 Programmable cost functions

Though most of this research focused on time loss reduction and increasing throughput, any
cost function can be used in a dynamic traff ic controller in a rather straightforward way. The
selection of available mechanisms compares different possibili ties by evaluating the cost
function for that specific solution. The solution with the lowest total cost is used.

Energy consumption, out-of-order penalties, priority deliveries (loaded vehicles are more
important for example) and starvation avoidance can all be integrated in the cost function.
Instead of a yes/no service a gradual service is offered.

2.3.7 Regular deadlock

Deadlock is a state of the system or part of the system in which a number of vehicles are
waiting for each other to release some area. This ‘waiting-for-chain’ is cyclic. It can be
represented well by a resource-allocation graph. In the resource allocation graph, a resource is a
square and a process is a circle. The processes represent the vehicles in the system, while the
resources represent the room the vehicles use.

r4

p 4

r1 p 1

p 2

p 3

r2

r3

Figure 4: Deadlock in a resource-allocation graph

Figure 4 shows a resource-allocation graph containing a cycle indicating deadlock. In the rest of
this thesis, deadlock cases with cyclically blocked vehicles are referred to as regular deadlock
or normal (multivehicle) deadlock.

Deadlock prevention and detection algorithms based on fixed paths do not work when using a
dynamic traff ic controller: new paths are generated on the fly which break the validity of found
results. The deadlock prevention algorithm as presented by Hibma in [lit. 8] should be run
before each modification. This is probably very time consuming and thus not feasible. New
deadlock prevention and detection algorithms should therefor be researched.

Unfortunately regular deadlock can still occur in a dynamic system environment. It should
occur less frequent than in a static semaphore controller because the dynamic controller always
tries to avoid stopped vehicles (by means of the deviation knowledge rule, discussed in section
3.8).

2.3.8 Dynamic deadlock

Imagine a number of vehicles trying to avoid each other and some stopped vehicles. The
dynamic controller sends them driving in a ‘circle’ . The vehicles are waiting for each other to
release resources. In fact this is a repetitive form of deadlock. All vehicles claim and release
their resources simultaneously. We call it dynamic deadlock. See figure 5 for an example.

Dynamic traff ic control of free navigating automatic guided vehicles

- 21 -

Figure 5: Dynamic deadlock

This is a very undesirable state of the system because not only is the system doing nothing
productive, the vehicles consume energy while driving and at first glance look like they are
busy working properly.

Dynamic deadlock is only possible if repeating non-productive patterns are produced by the
controller. The knowledge rules in the system that cause this behaviour should provide
functionality to break the patterns.

Dynamic traff ic control of free navigating automatic guided vehicles

- 22 -

3 Local traffic optimisation

In this chapter the optimisation of local traff ic is discussed. Local traff ic is a subset of the traff ic
in the entire system. Local traff ic is restricted to only a few vehicles which are close to each
other. The model of local traff ic is less complicated. Therefor we can analyse it better. In this
chapter we assume that local traff ic means only two vehicles. If only two vehicles are analysed,
we speak of bilateral conflict resolution.
 The general idea of bilateral conflict resolution is handled in section 3.1. A detailed look into
a number of crossing resolution methods is taken in its subsections. In section 3.8 deviation is
shortly mentioned.
 We also discuss a dangerous side-effect of bilateral conflict resolution, called the mutual
deadlock. Mutual deadlock must be avoided at all times.

3.1 Bilateral conflict resolution

In this chapter several methods of bilateral conflict resolution are presented and discussed into
detail. Bilateral conflict resolution is concerned with the handling of a conflict between two
vehicles only. No other vehicles or effects on other vehicles are considered. This is necessary to
make the analysis more easy. A special, very important and frequently occurring kind of
bilateral conflict is crossing. Most of this section discusses ways to optimise crossing.

To measure performance of the different methods the average time-loss per vehicle is
calculated. In general however, this could be any cost function, for example average time loss
plus use of energy.

v1

v2

d1

d2

Oα

Figure 6: The crossing model

Crossing conflicts are represented by a number of parameters. The vehicles in the conflict are
called v1 and v2. The paths they follow are assumed to be straight originally. The point where
the paths cross is called the crossing or the intersection or the epicentre and is denoted by O.
The distance of a vehicle to the epicentre is denoted by di where i is the vehicle’s number. It is
also called the arrival distance. Unless noted otherwise v1 is the closest vehicle so 21 dd ≤ . The

difference 12 dd − is called the relative arrival distance. The angle of intersection between the

vehicles is denoted by]]πα ..0∈ . Larger angles are symmetric with smaller angles and can be

converted using () αππα −=> 2h . The angle 0=α is not a crossing and is not considered.
Figure 6 shows this model.

Dynamic traffic control of free navigating automatic guided vehicles

- 23 -

3.2 Collision diagrams

A collision diagram is a 2-dimensional graphical representation of the possible collisions
between two vehicles along their paths. On both axes the travelled distance of a vehicle along
its path is given. These distances are denoted by s1 and s2. The diagram indicates which
combinations of (s1,s2) cause a collision. If the orientation of a vehicle is uncertain this can be
accounted for by using its enclosing hull instead of the real oriented shape.

s1

s2

0

0

Figure 7: Collision diagram of disc-shaped crossing vehicles

Usually the leading vehicle6 is put on the horizontal and the trailer vehicle7 on the vertical axis
of the collision diagram. Vehicles cannot drive backwards so the joint trajectory that the
vehicles follow is represented by a monotonic rising function (in most collision diagrams
indicated by a thick black arrowed line).

In figure 7 the collision diagram for two disc-shaped vehicles on straight paths that make a
sharp crossing is shown. The dark-grey represents the collision area. The light-grey in the lower
left corner represents the configuration states which result in mutual deadlock. The white area is
the set of collision free areas which can be used safely.

3.3 Mutual deadlock

A mutual deadlock is a deadlock situation of two vehicles. As with ordinary deadlock it
happens when the vehicles occupy resources (some area) which the other vehicle needs to
continue driving. Figure 8 shows such a situation.

Figure 8: Mutual deadlock

6 The leader vehicle is the vehicle that continues driving at topspeed. Usually it is the vehicle which is closest to the intersection.
7 The trailer vehicle is the vehicle that must adapt its progress to the plan of the leader vehicle. Usually it is the vehicle which is
most removed from the intersection.

Dynamic traffic control of free navigating automatic guided vehicles

- 24 -

In the collision diagram (figure 7) this is the light-grey area in the lower left corner. Let
() 21 ssf � be a monotonic rising function representing a joint trajectory for which

()
10

1

1 ≤
∂

∂
≤

s

sf
. The mutual deadlock area in the collision diagram equals the set of states (x ,y)

for which

() () () yxfyyxxcollisionyxyxff ′=′∧≥′∧≥′∧=′′∃⇒=∀ ,:

Mutual deadlock is caused by a bad conflict resolution which does not prevent it. It must be
prevented because deadlock is a very undesirable state of the system.

3.4 Blocking

Blocking is the resolution which stops one vehicle early so that the other vehicle can pass
without problems. The stopped vehicle does not proceed until the other vehicle completely
passed the crossing. The area of the crossing in which only one vehicle may be present at any
moment is called the critical area. Figure 9 shows an example of the critical area at a crossing.
The dotted line represent the crossing paths of two vehicles. The area enclosed by the solid
lines represents the resulting critical area.

critical area

Figure 9: Blocking: critical area

The representation of the critical area can be transformed to a collision diagram. In the collision
diagram the critical area guarded by blocking is the Cartesian zone [] []dcba ,, × with

(){ }collisionssssa =∃= 2121 ,:min

(){ }collisionssssb =∃= 2112 ,:min

(){ }collisionssssc =∃= 2111 ,:max

(){ }collisionssssd =∃= 2122 ,:max

In figure 10 this is the rectangle around the collision area. The black arrow in this picture
represents the joint trajectory. The dotted black arrow is the ideal trajectory which could have
been used if vehicles were immaterial.

Blocking is often the only rule used in static traffic controllers. It can be implemented very
efficient using semaphores [lit. 1-8]. The entire critical area is calculated before system run-
time. Semaphores are placed along paths to guard the critical area. In the collision diagram this
is at the boundary of the Cartesian zone. When a vehicle wants to enter the critical area it must
claim the semaphores [lit. 1]. When it leaves the critical area, the semaphores are released
again.

Dynamic traffic control of free navigating automatic guided vehicles

- 25 -

In dynamic traffic control the blocking method can also be used. Of course the calculation of
the Cartesian zone is done during run-time. Because it is done during run-time, the Cartesian
zone can be placed where needed (around critical areas). After its use it is discarded.

s1

time-loss of v2

a c

b

d

s2

Cartesian zone

Figure 10: Collision diagram of blocking with rectangular vehicles

The time loss of the waiting vehicle can easily be derived from the collision diagram. The
difference between the two arrows at the right indicates the time-loss induced by blocking. The
joint trajectory cannot enter the Cartesian zone, because this would mean that more than one
vehicle is present in the critical area. Thus, the joint trajectory must satisfy

[] []() [] []()casdbsdbscas 1221 ∉∧∈∨∉∧∈

Since it is assumed that s1 takes the lead, bs <2 must hold until cs >1 . Then both vehicles can
drive at full speed without any more danger of collision. All this is represented by the thick
black arrow in figure 10. The formulas presented here are without relative arrival distance
correction. The influence of the relative arrival distance is discussed in section 3.5.1.

The time loss of blocking strongly depends on angle and relative arrival distance and somewhat
on the vehicle shape. An exact formula has been determined for circular shaped vehicles and
rectangle shaped vehicles. Blocking is well defined for angles of intersection in] [π..0 . In the
case πα = (vehicles are exactly opposite) the blocking method cannot solve the conflict and is
not defined.

For circular shapes the average time-loss τ is (derived in appendix A.2.2):

] [πα
α

τ ..0,
sin

2 ∈= r
block

For rectangle vehicles τblock is (derived in appendix A.2.1):

∈

+

∈

+

=
ππαα

παα

τ
..

2
,

2
tan

22

2
..0,

2
cot

22
wl

wl

block

Dynamic traff ic control of free navigating automatic guided vehicles

- 26 -

Because the Cartesian zone contains all possible (s1,s2) for which

() () collisionssscollisionsss =∃∨=∃ 212211 ,:,:

blocking is protected from mutual deadlock. However, the Cartesian zone also contains
collision-free states which cannot be used now. This can be inefficient. An improvement is the
concept of ‘ advancing’ which is explained in the next section.

3.5 Advancing

Advancing is the resolution which lets one vehicle wait and the other pass. But as soon as
possible the waiting vehicle tries to advance slowly without disturbing the other vehicle. Figure
11 explains the concept and compares blocking to advancing. The thick black arrow is the joint
trajectory generated by advancing, the dotted grey arrow is the joint trajectory generated by
blocking. The dotted black arrow is the ideal trajectory again.

As can be seen in figure 11 the time loss of advancing is smaller or at most equal to the time
loss of blocking, which makes it an interesting replacement of blocking. The profit made by
using advancing instead of blocking is indicated in the figure.

s2

time-loss
of v2

s1

profit

Figure 11: Advancing and blocking

The resulting average time-loss is derived in appendix A.3.1 for circular vehicles and in A.3.2
for rectangular vehicles. As for blocking, the formulas presented here are without correction for
relative arrival distance. This is discussed in section 3.5.1.
 The formulas for the average time-loss of advancing are

] [pa
a

t ..0,

2
cos

∈

= r
advancing for circular vehicles and

] [pa
a

t ..0,
2

tan
22

∈

+= wl

advancing for rectangular vehicles.

For rectangular vehicles the time-loss of advancing for angles of intersection larger than
2

p
a =

reduces to blocking (proven in appendix A.3.2.1). In the coll ision diagram this shows in the
180° rotated coll ision area which blocks v2 from advancing until v1 has passed the crossing
completely. See figure 12. In figure 13 the same is shown for circular vehicles.

Dynamic traff ic control of free navigating automatic guided vehicles

- 27 -

s2

time-loss
of v2

s1

Figure 12: Advancing if α� ≥� π� /2 for r ectangular vehicles

s2

s2

Figure 13: Advancing if α� ≥� π� /2 for circular vehicles

The joint trajectory for advancing can easily be derived from the collision diagram. It mostly
follows the lower border of the coll ision area with two exceptions: first, mutual deadlock areas
should be avoided by introducing a straight, horizontal trajectory part. Second, the trajectory
steepness cannot become greater than 12 ss = .
 Assume that () 21 ssf � and () 21 ssg � are any monotonic rising functions representing
joint trajectories. Let g be a coll ision and mutual deadlock free trajectory satisfying

()
10

1

1 ≤
∂

∂
≤

s

sg
(steepness constraint). Then f is the advancing trajectory if it satisfies

gfg ≤∀ :

3.5.1 Influence of relative arrival distance on blocking and advancing

s2

d2-d1

s1

Figure 14: Relative ar rival distance of blocking and advancing

Dynamic traffic control of free navigating automatic guided vehicles

- 28 -

Both for blocking and advancing the relative arrival distance of the vehicles is subtracted from
the total time-loss, or, the average time-loss is reduced by half the relative arrival distance,
() 2/12 dd − .
 In the collision diagram (figure 14) this shows by the translation of the start of the joint
trajectory towards the right.

3.6 Roundabout

The roundabout method introduces a small roundabout near or on the original intersection. The
roundabout is sized and placed in such a way that both vehicles enter, drive and leave the
roundabout together without colliding. The vehicles must deviate from their original path to
enter the roundabout. The path deviation goes along the tangent from their start position to the
roundabout and is symmetric for both vehicles. Both vehicles must start the deviation at the
same moment in time. See figure 15 for an example roundabout.
 The result can be a significant improvement of the loss of time, depending on the angle of
intersection α. Because the vehicles do not need to slow down energy is also conserved (no
acceleration).

roundabout

new pathold path

β α

β

R

Figure 15: Roundabout

The vehicles are assumed to drive straight originally and at the same speed. Both vehicles are
assumed to have identical shapes. The radius of the roundabout is referred to as R. The
deviation vehicles have to make when approaching the roundabout is denoted by β. The phase
difference on the roundabout is denoted by ϕ. Both vehicles drive in the same direction over the
roundabout.

Several variants of the roundabout have been developed. They are discusses in the next
sections.

3.6.1 Full roundabout

This is the roundabout as described above. The two vehicles approaching the roundabout by
means of a tangent are assumed to make an equal deviation from their original straight paths.
This preserves the original relative orientation α so the phase difference on the roundabout is
equal to the relative orientation thus αϕ = . Figure 15 shows the concept of the full roundabout.

The full roundabout is defined for angles]]πα ..0∈ . The full roundabout has two major
advantages: small loss of time and no speed fluctuations. A disadvantage is the room needed to
perform the roundabout.

Dynamic traffic control of free navigating automatic guided vehicles

- 29 -

Figure 16 shows the roundabout with minimal radius R that contains a configuration of
rectangular vehicles with phase difference ϕ.

ϕ
R

l

w

Figure 16: Configuration ϕ� on roundabout with minimal R

With the figure and αϕ = we derive as minimal radius R of the roundabout

22
cot

2

wl
R +

= α

Both vehicles execute the same plan, but rotated over angle α. The straight segments to the
curved segment are symmetrical before and after the roundabout. The arc the vehicles drive
over the roundabout equals 2β. The plans are equally long, because the angles of deviation are
equal as well.

The direction of rotation on the roundabout is determined by the relative arrival distance. The
roundabout always rotates so that the vehicle which is closest takes the lead on the roundabout.
If the relative arrival distance is larger than zero, the entire roundabout is displaced away from
the closest vehicle and towards the most removed vehicle. In this way the plans stay the same
for both vehicles. Figure 17 explains both.

β

M
R

e1

d2

d1

rotation

β

Figure 17: Rotation and translation of roundabout

Knowing this we derive the path deviation and average time loss from figure 18 which shows a
roundabout in detail.

Dynamic traffic control of free navigating automatic guided vehicles

- 30 -

β

β

R

Re

e

d1

d2-d1

d1

α

d1

f

l

s2

s1

M

p1

p2

γ
δ

path of vehicle 2

f

path of vehicle 1

β

Figure 18: Construction of roundabout with ar r ival distances d1 and d2

The centre M of the roundabout is placed at equal distances f from the original paths of the
vehicles. The centre is also placed at equal distances e from the starting position of the vehicles.
The orthogonal distance f from M to the original straight paths is

−

=
2

cot
2

12 αdd
f

Now it can be seen that

22 dfe +=

where the average arrival distance d is

2
21 dd

d
+

=

Which results in the arc of the deviation, β:

−

=

e

f

e

R
arcsinarcsinβ

For the total path length of one vehicle we obtain

 +−= RRep β222

Dynamic traff ic control of free navigating automatic guided vehicles

- 31 -

and for the average time-loss of the full roundabout

 −+−= dRReroundabout βτ 222

The roundabout is only valid if 0≥β and Re ≥ .

The formula shows that τroundabout is not linearly depending on the relative arrival distance. The
values of e and β are both not linearly depending on the relative arrival distance.

3.6.2 Shrunken roundabout

A shrunken roundabout is always placed exactly on the epicentre of the conflict. Both vehicles
start deviating at the same moment in time. The radius is 'shrunk to fit' both vehicles, but not at
an angle equal to α so αϕ ≠ . This also causes 21 ββ ≠ . The lead of v1 is preserved as much as
possible. The leader vehicle enters the roundabout before the trailer vehicle does and already
drives part of the roundabout. This results in a larger angle ϕ between the vehicles on the
roundabout, but a smaller R. Both vehicles continue driving at top speed.

ϕ

R

Figure 19: Shrunken roundabout

When v2 enters the roundabout, both vehicles have driven the same distance because none of
the vehicles was delayed. As of yet the solutions for R and ϕ are unknown, but assuming

2
πα = , ϕ should satisfy (derived in appendix A.1.2):

R

RdRd

d

R

d

R
22

1
22

2

21

arcsinarcsin
−−−

+

+

−= αϕ

The resulting average time-loss might be less than the average time-loss of the full roundabout.

Dynamic traffic control of free navigating automatic guided vehicles

- 32 -

3.6.3 Advancing roundabout

v1

v2

Figure 20: Advancing roundabout

One vehicle is appointed leader, the other trailer vehicle. The vehicles perform a roundabout but
one which has been made too small on purpose. However the paths are kept equal and are
constructed using the full roundabout (but with R too small). The leader vehicle is granted
priority over the trailer vehicle. The trailer must lower its velocity to allow the leader to pass.
The leader vehicle is always at front in the roundabout direction.

Figure 20 shows the situation. The vehicle driving from top to bottom is the leader vehicle.
Clearly, the roundabout is much too small to hold both vehicles at a straight angle. The trailer
vehicle therefor slows down to allow the leader to pass.

Numerical approximation (see appendix A.1.3) showed that, at least for circular vehicles, the
advancing roundabout is sometimes more efficient than a full roundabout. This is only in
situations where the vehicles are relatively close to the epicentre already.

The advancing roundabout can be seen as a generalisation of advancing and full roundabout.
Advancing has the minimal R=0 while the full roundabout has the maximal needed R.

3.7 Swirl

The swirl is a very dance-like movement and comes in dozens if not hundreds variants. Only
one (the first) is discussed. This one was developed for circular vehicles at right angles and the
ideas explained here are not entirely compatible with rectangle vehicles or other angles. The
vehicles must be of the same size with radius r.

Dynamic traff ic control of free navigating automatic guided vehicles

- 33 -

2

1
1

2
2

1

Figure 21: Three swirl states

The idea behind swirl is to fix the distance between the vehicles at a distance 2r. This is enough
to prevent collision. The vehicles perform a continuous linear translation and rotation around
their mutual centre. The vehicles in their movement can be viewed as a pair of dancers. At the
end of their performance they have switched places and can continue their journey separately.

Figure 21 shows three states of the swirl representing start, intermediate state halfway and final
state.

A mathematical description of the problem is not yet available.

3.8 Single-sided deviation

Single-sided deviation is a rule which tries to deviate one vehicle in order to avoid another
vehicle. It is borrowed from the full autonomy concept. It is especially useful in situations
where two vehicles are opposite or one vehicle stands still.

v2

v1

b1 b2

p

Figure 22: Optimal deviation for single-sided deviation

Deviation can be used to optimise the time of crossing. In figure 22 we see how. The most
remote vehicle deviates towards the back of the leader vehicle. This looks li ke a single-sided
roundabout.

3.8.1 Autonomous deviation

The autonomous deviation rule tries to solve conflicts by repeatedly making small deviations.
To do this, one or both vehicles make a deviation away from the other. This should be mutually
agreed upon to prevent the conflict from becoming worse. The deviation can be to any side of
the vehicle’s path and can be of any magnitude. The rule concentrates on passing now, not on
optimising.

Dynamic traff ic control of free navigating automatic guided vehicles

- 34 -

The deviation usually does not provide an immediate resolution of the conflict. A short time
later, the situation can be re-evaluated by autonomous deviation and another adjustment is
made. This is done until the conflict has been solved.

immobile
 vehicle

Figure 23: Deviation to avoid obstacles

If autonomous deviation is used to pass conflicts, care should be taken to avoid dynamic
deadlock. If a group of vehicles deviate in a fixed cyclic pattern, they are in dynamic deadlock.
 To counter this, the autonomous deviation rule must not always choose the same side to turn
to. Instead, this side should be chosen random if possible. The random factor reduces, but does
not eliminate, the chance of dynamic deadlock. By randomly choosing a side of deviation, the
chance of repeating deviations (li ke circles) is rather small .
 However, the autonomous deviation rule should produce more or less consistent plans, so the
randomness must not be too large. Otherwise, the vehicles behave li ke they are ‘uncertain’ .
 Using this random factor makes autonomous deviation a very powerful knowledge rule which
adds enormous robustness and flexibili ty to the system.

3.9 Comparing methods

The performance of each rule strongly depends on the angle of intersection and the relative
arrival distance. There is no general, uniform solution to the crossing problem. Still , it is useful
to know when rules outperform other rules, where their strengths are and when weaknesses
appear. In a number of graphs blocking, advancing and full roundabout are compared and
evaluated. The functions in each graph are for rectangular vehicles. Each graph has different
values for the distances d1 and d2 or for the relation of the vehicles’ size l and w.

On the horizontal axis of each graph, the angle of intersection a is put. The domain8 of the
functions is the range of a and equals]]p..0 for roundabout and] [p..0 for blocking and
advancing. On the vertical axis the average time-loss per vehicle expressed in w is put. The
three functions are numbered. Blocking is line #1, advancing is line #2 and full roundabout is
line #3. The functions are continuous.

The reduction of average time-loss for one angle is defined by

old

newold

t

tt -

where t old is the average time-loss in the old situation and t new is the average time-loss in the
new situation. For the interval of angles []ba.. the overall reduction of average time-loss is
defined by

() ()
()ò

-

-

b

a old

newold dx
x

xx

ab t

tt1

8 The domain is limited to valid combinations of angle and distances. In all graphs on the left side the functions are therefor
partially missing. This effect increases if the vehicles become larger.

Dynamic traffic control of free navigating automatic guided vehicles

- 35 -

Performance of methods

0

1

2

3

4

5

6

0 1/4 pi 1/2 pi 3/4 pi 1

Angle of intersection [rad]

A
ve

ra
g

e
tim

e
lo

ss
 [w

]

1:Blocking

2:Advancing

3:Roundabout

1

3

2

d1=d2=4w, l=2w

Figure 24: Performance of methods #1

In figure 24 the situation is displayed where the vehicles are twice as long as they are wide.
Both are removed four times their width from the epicentre. The optimal angle for blocking and

advancing is
2

πα = . For roundabout this is πα = .

 In this graph we see that advancing is the best solution for sharp angles until about
3

πα = .

Then roundabout becomes better than both blocking and advancing. For the important angle

2

πα = , where advancing and blocking are equivalent with an average time-loss of 1.5w,

roundabout has an average time-loss of 0.57w. The average time-loss for
2

πα = is reduced by

62.0%. On the interval

=

4

3
..

4

ππα compared to blocking only, the best-of-all combination

reduces the average overall time-loss by 62.3%.

Figure 25 shows the same crossing situation but now for square vehicles. Notice that all
functions now result in a smaller average time-loss. Apparently crossing is handled better for

square vehicles (which is not very surprising). The average time-loss for roundabout at
2

πα =

is 0.25w. The average time-loss of blocking and advancing at
2

πα = is 1.00w. The average

reduction of time-loss on the interval

=

4

3
..

4

ππα is 76.5%. The equilibria of roundabout and

advancing and of roundabout and blocking have shifted towards the sharp angles. This indicates
that roundabout profits more from square vehicles than the other two methods.

Dynamic traffic control of free navigating automatic guided vehicles

- 36 -

Performance of methods

0

1

2

3

4

5

6

0 1/4 pi 1/2 pi 3/4 pi 1

Angle of intersection [rad]

A
ve

ra
g

e
tim

e
lo

ss
 [w

]

1:Blocking

2:Advancing

3:Roundabout

3

1

2

d1=d2=4w, l=w

Figure 25: Performance of methods #2

Performance of methods

0

1

2

3

4

5

6

0 1/4 pi 1/2 pi 3/4 pi 1

Angle of intersection [rad]

A
ve

ra
g

e
tim

e
lo

ss
 [w

]

1:Blocking

2:Advancing

3:Roundabout

d1=d2=4w, l=4w

3

2

1

Figure 26: Performance of methods #3

Dynamic traff ic control of free navigating automatic guided vehicles

- 37 -

In figure 26 again the same situation, but now for rather long vehicles: four times as long as
they are wide. In this graph we see that the roundabout has shifted a lot towards the larger

angles. The reduction by roundabout over blocking at
2
p

a = is now 35.2%. The reduction over

the interval

=

4
3

..
4

pp
a amounts to 43.6%. This can be explained from the fact that the

vehicles have, relative to their length, already neared very close to the epicentre. To use the
roundabout, a quite large angle of deviation is needed. This increases the time-loss of
roundabout significantly. Advancing and blocking are less affected because they do not depend
on the arrival distance to the epicentre, only on the relative arrival distance of the vehicles.

Performance of methods

0

1

2

3

4

5

6

0 1/4 pi 1/2 pi 3/4 pi 1

Angle of intersection [rad]

A
ve

ra
g

e
tim

e
lo

ss
 [w

]

1:Blocking

2:Advancing

3:Roundabout

3

1

2

d1=d2=4w, l=6.4w

Figure 27: Performance of methods #4

In figure 27 we see the same situation again for the vehicles used at the ECT terminal at the

‘Maasvlakte’ . These vehicles are very long, compared to their width. The factor
w

l
 is as large

as 6.4. Roundabout at
2
p

a = is somewhat worse now than advancing and blocking. Note also

the rather large interval where the state is invalid. This suggests that the arrival distance to the
epicentre is rather small compared to the length of the vehicles. The reduction over the interval
is not available because of the invalid states.
 In figure 28 the vehicles are placed further away from the epicentre. This results in a dramatic
decrease of time-loss for the roundabout. As might be expected, advancing and blocking are the
same as in the previous graph.
 The reduction on the interval is 56.8%. The reduction on the right angle is 62.6%.

Dynamic traff ic control of free navigating automatic guided vehicles

- 38 -

Performance of methods

0

1

2

3

4

5

6

0 1/4 pi 1/2 pi 3/4 pi 1

Angle of intersection [rad]

A
ve

ra
g

e
tim

e
lo

ss
 [

w
]

1:Blocking

2:Advancing

3:Roundabout

d1=d2=10w, l=6,4w

3

1

2

Figure 28: Performance of methods #5

Performance of methods

0

1

2

3

4

0 1/4 pi 1/2 pi 3/4 pi 1

Angle of intersection [rad]

A
ve

ra
g

e
tim

e
lo

ss
 [w

]

1:Blocking

2:Advancing

3:Roundabout

3

1

2

d1=4w, d2=5w, l=w

Figure 29: Performance of methods #6

An example of what happens if the relative arrival distance is larger than zero is shown in
figure 29. Here the vehicles are square and the relative arrival distance is exactly w. All three
methods improve which is seen by the functions that moved towards zero time-loss.
 Roundabout improved most and shows an almost constant time-loss of less than 0.06w while
advancing and blocking do not go below 0.5w. This results in a 92.45% reduction over the

interval

=

4
3

..
4

ππα and 88.83% reduction at
2
πα = .

Dynamic traff ic control of free navigating automatic guided vehicles

- 39 -

The same results are true for all comparable situations where the relative arrival distance equals
the length of the vehicle. The performance of roundabout even gets better if the d1 and d2

become larger.

Performance of methods

0

1

2

3

4

0 1/4 pi 1/2 pi 3/4 pi 1

Ang le of intersection [rad]

A
ve

ra
g

e
ti

m
e

 lo
s

s
[w

]

1:Blocking

2:Advancing

3:Roundabout

2

d1=4, d2=11.4w, l=6.4w

1

33

2

1

Figure 30: Performance of methods #7

In figure 30 a configuration where the relative arrival distance equals wl + is depicted. When

2
πα = there is no conflict. The time-loss here thus is 0. For other angles however, there still is a

potential conflict as far as blocking is concerned. Advancing and roundabout are able to reduce
the time-loss of the ‘ conflict’ to 0. This is a rather nice example of the resource allocation
property of dynamic methods: advancing and roundabout both adhere to this property and
therefor do not see the configuration as a conflict. Blocking does not adhere to this property and

introduces rather large time-losses. On the interval úû

ù
êë

é=
4

3
..

4
ππα this results in a 99.37%

reduction of time-loss. Again, these results hold for all relative arrival distances equal to wl + .

In general we see that roundabout gains relatively more from a large relative arrival distance
than advancing and blocking. However, in absolute terms of time-loss, advancing and blocking
gain more by a larger relative arrival distance. The reduction percentages with a relative arrival
distance of zero can be used as a low boundary for all possible configurations with a relative
arrival distance greater than zero. In absolute terms the reduction becomes less important,
because the absolute time-loss is smaller.

We conclude that much profit can be gained by using the bilateral conflict resolution methods.
Especially a combination of full roundabout and advancing performs very well. By using this
combination, the time-loss usually can be reduced by as much as 80%.
 In some configurations blocking tries to solve conflicts which do not exist for roundabout and
advancing. Because the vehicles can continue driving at the same speed, energy use is also
lowered in this case. Lower use of energy means less costs and less loss of time (less
refuelling).
 Depending on the results wanted other methods could be devised to suit specific needs.

Dynamic traff ic control of free navigating automatic guided vehicles

- 40 -

4 Global traff ic optimisation

Local traff ic influences the behaviour of global traff ic in the long run. To improve the odds that
the choices made to resolve local conflicts are the best ones available, we introduce field effect
methods. These field effect methods try to provide a useful selection of good and bad local
optimisations. The field effect resolution should favour plans which are best for the
neighbourhood of the conflicting vehicles. They are presented in section 4.1.
 A special kind of global traff ic optimisation is the co-ordination of vehicle streams. Streams
are convoys of vehicles close behind each other. The crossing of streams is related to the
crossing of two vehicles. Using streams in dynamic traff ic control is discussed in section 4.2.
 No traff ic control is complete without multivehicle co-ordination. Multivehicle co-ordination
is the part of the traff ic control which sees to it that the conflicts that arise are all handled.
Several heuristics have been developed in the past. In this thesis a very basic multivehicle co-
ordination is presented in section 4.3.
 Flow control is related to multivehicle co-ordination, but is on a higher, more abstract level. It
is briefly discussed in section 4.4.

4.1 Field effects

Figure 31: Field effects

By using any method to avoid collisions plans are changed. This change of plans ultimately
affects others vehicles. Simulation results (discussed in chapter 6) clearly showed that it is
necessary to look further than one's bumper. This can be demonstrated by a very simple
example. Figure 31 clearly shows that if the vertical moving vehicle can access the crossing
first, two other vehicles have to wait, which results in a larger total time loss. The effects of a
bilateral resolution on the vehicles near it are called field effects. These field effects can ripple
through the system and can have a major impact on the system as a whole. They need to be
addressed adequately.

Dynamic traff ic control of free navigating automatic guided vehicles

- 41 -

epicentre

A

B

n1

n2

n3

n4

n5

n6n7

n8

Figure 32: Neighbourhood of a conflict between vehicles A and B

The existence of these field effects can only be solved by looking at a larger scope than bilateral
conflict resolution does, either in space or time or both. The field effect resolution heuristics
predict what the effect of a bilateral conflict resolution wil l be on the neighbourhood of the
conflicting vehicles and assign extra costs or lower the costs of the plan.

The neighbourhood is the set of all vehicles that is within a predefined range of the conflicting
vehicles, excluding the conflicting vehicles. Figure 32 shows a conflict between vehicles A and
B and the corresponding neighbourhood. The vehicles numbered ni are the neighbours.
 The neighbourhood ()ji vvN , of vehicles vi and vj is defined by

() () (){ }kjirvvdrvvdvvvN fkjfkikji ¹Ù£Ú£= ,,,,

where r f is the radius of the field.

During the research two field effect resolution heuristics have been developed. They are
discussed in the next two sections.

4.1.1 Motion field

The (weighted) sum of the motion vector of all vehicles in the neighbourhood is calculated. The
resulting average motion vector V

�

 is an indication for the (weighted) average movement of the
vehicles nearby. If a suggested bilateral conflict resolution plan is in concert with the average
motion vector V

�

, it gets rewarded by a lower cost factor. If the plan is in disconcert, a penalty
factor is used. In this way a 'gradient of goodness' σ can be assigned to a plan.

For V
�

 we define (if weighted):

()
()
å

Î
÷
÷
ø

ö
ç
ç
è

æ
-×=

ji vvNn f
n r

epicentrend
vectormotionV

,

,
1

�

Dynamic traff ic control of free navigating automatic guided vehicles

- 42 -

or simply the sum of motion vectors if weighting is not used. The motion vector of a vehicle n
is determined by its current heading (direction of vector) and speed (size of vector).

The gradient of goodness σ depends on the correspondence of the average motion vector V
�

with the plan's resulting motion vector u
�

 of the two vehicles involved. This can be done by
taking the vector inproduct as shown in figure 33. δ indicates the angle of difference.

neutral, 0=σ

exact match, 1=σopposite, 1−=σ

δ

2

1
=σ

2

1
−=σ

V
�

Figure 33: Gradient of goodness of motion field assuming normalised vectors

We define (as in the picture)

uV
�

�

•=σ

Two problems arise here. First, the plan’s resulting motion vector u
�

 is not clearly defined.
Several ways to measure u

�

 are possible. For example, the average motion over the entire plan
can be used, or the resulting motion within a very short time, or anything in between these two.
 None seems satisfactory. The average motion over the entire plan does not give a good
indication of the real motion of the vehicles, because the plans tend to return to their original
paths so the average heading of the vehicles is along the original path. On the other hand, the
resulting motion after a short time does not express the influence of the plan over a longer time.
 Second, the relative sizes of V

�

 and u
�

 are not accounted for. This would appear to be solved
easily by making

uV
V

u
�

�

�

�

•=σ

This factor encourages the use of plans which result in a large motion vector u
�

.

With the goodness ratio we define a cost multiplier m to calculate the effective cost ceffective of a
plan.

()σfm =

planeffective cmc ⋅=

In simulations (see chapter 6), f has been tried for linear and exponential functions. It showed
that this heuristic works fine for relatively simple situations. When a larger number of vehicles
is involved (say 10 in double crossing lanes) it delivers very inefficient results. This
inefficiency stems from inadequate estimation of the field effect on other vehicles.
 We conclude that the average motion vector V

�

 is inadequate to express the field effect.

Dynamic traff ic control of free navigating automatic guided vehicles

- 43 -

4.1.2 Neighbour request

The neighbour request tries to estimate the field effects by evaluating the effect of a plan on
each of the neighbours of the vehicles in the bilateral conflict separately. For each of the two
vehicles vi and vj in the conflict, the neighbour set ()ivN is calculated. ()ivN is defined by

() (){ }kjirvvdvvN fkiki ≠∧≤= ,,

Note that the neighbours now depend on the conflicting vehicles and not on the epicentre of the
conflict.

The plan of vi is evaluated for each vehicle in ()ivN as the plan of vj is evaluated for each

vehicle in ()jvN . Whenever a plan results in a conflict or solves a conflict with a neighbour, a

cost estimation is made. This cost estimation can therefor be positive if a new conflict exists or
negative if an old conflict is (partially) solved. Note that the conflict is considered isolated to
make a cost estimation.
 Preferably, this cost estimation should be based on the bilateral conflict resolution methods
presented in chapter 3. However, this is not always possible because these resolution methods
are based on certain vehicle and path shapes.
 Suppose the bilateral resolution methods are applicable for all situations. There stil l is the
problem which method to use. One option is to choose for the best option available. However, it
is not sure that this option can truly be used in the given confli ct. The estimated cost would
almost always be an underestimation of the real costs, resulting in a bad field effect resolution.
 Another option is to choose one resolution method which is always applicable and gives a
rather high cost. Advancing or blocking are both suitable. The estimation will not easily be an
underestimation, but rather a small overestimation. In the end, this results in a more
conservative, reliable field effect resolution.
 If the badness or number of affected neighbours is large enough the plan wil l be rejected in
favour of other, less disturbing plans.

Simulations (see chapter 6) showed that this field effect resolution method performs better than
motion field. It can solve complex situations much better. Since motion field handled simple
situations quite well, not much is gained in simple situations.

4.2 Vehicle streams

The concept of a vehicle stream (a number of vehicles close behind each other tracking a
common leader, basically along the same path) is supposed to increase total throughput and
therefor deemed very important. Related to streams are creating, merging and demerging of
streams which allow vehicles to enter and leave streams. In section 4.2.1 a special problem, the
crossing of streams, is discussed. Several solutions based on the dynamic traff ic control are
provided and compared for performance.

Creating streams in a dynamic traff ic controller is relatively simple. No inherent properties exist
which would hold one vehicle from following another. The only thing that needs to be done is
to direct the vehicles over the same path or have them track the same leader.

The same is true for inserting a single vehicle into or removing a single vehicle from a stream.
This simply results in some (usually two) bilateral confli cts which are solved using ordinary
bilateral conflict resolution. Of course, special rules could be added which preserve some order
in the stream or other important aspect.

Dynamic traff ic control of free navigating automatic guided vehicles

- 44 -

Figure 34 explains the situation. Vehicle 2 wants to leave the stream and wil l probably have a
conflict with vehicle 1 and 3. Vehicle 4 wants to enter the stream which results in conflicts with
vehicle 3 and 5.

Recognising a stream as a stream is more difficult and would require either a way to find it in
the layout or some bookkeeping. For example, each vehicle could be assigned to a stream when
needed and this can be recorded in a small database.

1 2 3

4

5

6

Figure 34: Inserting and removing vehicles in a stream

Merging and demerging of two streams can be viewed as two crossing streams, except that the
paths of the vehicles are not entirely straight. In a dynamic traff ic control, merging and
demerging is rather easy.

4.2.1 Crossing streams

Streams are expected to appear often in an AGV system. Conflicting streams wil l therefor also
appear often. The resolvement of these conflicts must be done efficiently. Several methods have
been devised.
 The performance of these methods is expressed in their average delay per vehicle. Minor

fluctuations are ignored. The results are strongly influenced by the ratio
w

l
c = .

The streams are assumed to cross under the angle of intersection α. The distance to the
epicentre of the conflict is irrelevant for the throughput because it will only affect the first two
vehicles. In each stream the vehicles are closely following each other in a straight line. All
vehicles are equally shaped and sized wl × and drive at the same speed.

4.2.2 Batch

w

vehicle
interspacing

l

Figure 35: Batch streaming

Dynamic traffic control of free navigating automatic guided vehicles

- 45 -

Batch streaming is driving a batch of vehicles from one stream over the crossing, than driving
an equally large batch of vehicles from the other stream over the crossing. If the intervehicle
space is ignored then the minimal distance between vehicles in a stream is l. The minimal
distance between vehicles of different streams is directly related to the loss of time of
advancing which is

] [παα
..0,

2
tan ∈

+ wl

In a batch the average delay therefor becomes

()

n

w

l
n

wlln

batch

+=

++−

= 2
tan

2
tan1 αα

δ

Note that this delay is a lower bound, because we ignore the vehicle interspacing.

4.2.3 Carousel

stream #1
stream #2

R

α

Figure 36: Carousel streaming

A carousel is a roundabout which is continuously filled from both streams at fixed intervals.
Two vehicles (one from each stream) enter the carousel, drive the roundabout and exit it.
 Figure 36 shows the model for carousel streaming. The vehicles approach a roundabout, drive
on it and leave it again.
 The carousel always rotates in the same direction.

An upper boundary of the average delay of the carousel can be found by noticing that one new
vehicle per stream can enter the carousel 2αR after the first vehicles entered the roundabout. So
every 2α, 2 vehicles can enter the carousel. This means the average delay per vehicle is related
to the time-loss of the roundabout and the angle α. The resulting delay is

+

== wlRcarousel 2

cot
2

αααδ

Dynamic traffic control of free navigating automatic guided vehicles

- 46 -

The radius of the roundabout R can be found using the formulas given in section 3.6.1. Note
that the average delay is an upper bound. It can probably be smaller by allowing vehicles to
enter the roundabout sooner.

4.2.4 Twist

The twist is a combination of the previous two methods. The streams are batched, but every
first vehicle of the waiting batch makes a roundabout with the last vehicle of the driving batch.
The other vehicles of the batch simply drive straight along.

In the time interval between the start of the first vehicles of two different batches n vehicles
have passed the crossing.
 The first vehicle of a new batch must use the roundabout which is a longer way than driving
straight on. Together with the first vehicle of a batch, the last vehicle of the previous batch
passes the crossing. The first vehicle starts driving at time zero.
 The second vehicle of a new batch is blocked for a while by the first vehicle. Assume that the
vehicles arrive at the other end of the crossing symmetrically. Then the second vehicle must
have a delay of τra and this conflict is solved by advancing.
 After that the remaining n - 2 vehicles in the new batch can continue driving immediately
behind their predecessor.
 Figure 37 shows the timing of twist streaming. From this the average delay is derived. vi,j is
the j th vehicle in the i th batch. β is the tangent deviation angle of the roundabout.

v1,1 & v0,n v1,2 v2,1 & v1,nv1,3 ...

batch delay

0 τra+2τadv(β) l+δ(v1,2) l+δ(v1,n-1)

Figure 37: Timing of twist streaming

() ()
n

ln advra
twist

βττ
δ

22 ++−
=

The average time-loss of the advancing second vehicle is added twice because we must
transform the average time-loss for two vehicles into a delay for one vehicle. The roundabout
solution is symmetric, so the transformation yields the same solution.

Because the twist uses a roundabout only for the first and last vehicle, it can be used for any
angle α if the batch size n is at least 3 so the vehicles have time to clear the roundabout.

To prevent collisions, the last vehicle of the ending batch must lead the first vehicle of the
starting batch on the roundabout. The rotation must of the roundabout must be chosen so that
the last vehicle of the ending stream does not interfere with the second vehicle of the starting
batch. This can be done by choosing the rotation most removed from the starting batch.
 Two roundabouts are therefor needed so that they can alternate. The direction of the
roundabout needs to be different for switches from stream #1 to stream #2 and stream #2 to
stream #1. Otherwise the vehicles from one stream would be blocked by the roundabout of the
last vehicle of the other stream.

In figure 38 the twist is pictured. In this picture the twist is displayed with tangents to reach the
roundabout.

Dynamic traffic control of free navigating automatic guided vehicles

- 47 -

stream #1

stream #2

switch of stream #1
to stream #2

switch of stream #2
to stream #1

β

α

Figure 38: Twist streaming

4.2.5 Conclusions on crossing streams

With some figures holding the functions of the three streaming methods we present the results
and draw some conclusions. On the horizontal axis the angle of intersection α is displayed. On
the vertical axis the average delay per vehicle expressed in the width of a vehicle is given. Both
figures are typical for the relations of the three functions. The functions are smooth and
identified by the number, corresponding to the legend to the side. Line #1 is batch, line #2 is
carousel and line #3 is twist. The arrival distances 21 dd = were set to 2l.

For sharp angles batch is always the best choice. If the batch size becomes larger, batch
efficiency increases and the break-even point with carousel shifts to the right. The ratio

w

l
c = however appears to have more impact. Given a large enough ratio c the carousel can

always become better than batch.

 Twist always outperforms batch at less than
4

πα = . If the ratio c is small or the angle α is not

very wide, twist is better than carousel, which corresponds to the relation between batch and
carousel. For larger c or very wide angle α, carousel is best. However, twist clearly is the
overall winner.
 Twist is very insensitive to the size of the batch. However, its minimum is at n=3. For small
ratios c, the twist is the best stream crossing mechanism. The batch size does not influence this
much but does increase the average delay of twist. For short vehicles, small batches are therefor
preferred.

Dynamic traff ic control of free navigating automatic guided vehicles

- 48 -

Comparing stream methods

0

1

2

3

4

0 1/4 pi 1/2 pi 3/4 pi 1

Angle of intersection [rad]

A
ve

ra
g

e
d

el
ay

 [
w

]

1:Batch

2:Carousel

3:Twist

n=4, l=2w

1

2

3

Figure 39: Comparing streaming #1

Comparing stream methods

0

1

2

3

4

5

6

7

8

9

10

0 1/4 pi 1/2 pi 3/4 pi 1

Angle of intersection [rad]

A
ve

ra
g

e
d

el
ay

 [
w

]

1:Batch

2:Carousel

3:Twist

n=4, l=6.4w

1

2

3

Figure 40: Comparing streaming #2

4.3 Multivehicle co-ordination

In the dynamic traff ic controller presented in this thesis multiple conflicts can occur at the same
moment. Any number of them can be related to each other. Solving one conflict might solve
another one too, but it can also create new conflicts. A co-ordination for confli ct solving must
be used.

Dynamic traff ic control of free navigating automatic guided vehicles

- 49 -

In literature, these problems are often called multiagent co-ordination. However, to keep in line
of this particular research, we will call it multivehicle co-ordination. In [lit. 18] several theories
for multivehicle co-ordination are discussed and explained. These co-ordination methods try to
predict which conflicts are most important. These should be solved first.
 The currently used strategy for multivehicle co-ordination is more simple and also does not
try to optimise to find the cheapest solution explicitly. The multivehicle co-ordination algorithm
was developed with the thought that conflicts which are nearest in time are most important and
need to be solved first, thereby allowing the best solution to be found for these cases because
other conflicts and their resolvements do not have to be considered. This strategy is also
provided in [lit. 18].
 Other strategies in [lit. 18] are based on resolving the longest conflicts first, the relatively
longest conflicts first (conflict duration divided by sum of plan duration) or the least movable
conflict first (union of plan time relative to sum of duration of plans).
 Depending on the temporal relationship two vehicles have, an alternative is chosen. Possible
temporal relationships are before, meets, equal, overlaps and in. Possible alternatives are
reduction of resources (lower needs, for example release pre-claim or take another route),
reduction of intervals (use finer indication of used intervals, for example more semaphores) and
spread (for example slow down).
 Please note that the provided strategies are of a general nature. An example for confli ct
resolution with autonomous robots is provided.

Independent of what strategy is used, the computational complexity of the multivehicle co-
ordination must be low. As mentioned above, solving conflicts might introduce new conflicts.
Multivehicle co-ordination must guard for the possibility of infinite conflict resolution relations.

The proposed strategy (the one used in the simulation tool) is an ‘earliest conflict first’
approach. Each next earliest independent (isolated) conflict is resolved until no more conflicts
are to be resolved. Each other conflict that involves at least one of the vehicles for which a
conflict has already been resolved (a related conflict) is not resolved during this round of the
co-ordination process. New conflicts which appear because another confli ct got solved, are not
resolved during this step either. Related, but later, conflicts are handled later.
 In effect this strategy resolves all most early, isolated conflicts and then starts over again.
 The strategy guarantees a linear complexity in the number of conflicts that must be resolved
each time the co-ordination is used. By predicting conflicts far enough ahead in time and soon
enough, unresolved conflicts rarely happen.

4.4 Flow control

Too much vehicles in a small area causes many conflicts. The job of the flow control is to
reroute vehicles so that the spread of vehicles over the entire layout saves time. Usually this
means avoiding busy places where a vehicle does not really need to be.

An example is give in figure 41. Suppose the vehicle originally had the plan to continue driving
forwards. Now several vehicles approach from the right. They are allowed to go first (they were
their first). The vehicle has the choice to wait or choose the alternative route to its goal.
Following the alternative route appears to be better at first sight, but new conflicts could happen
here. Predicting this exactly is very difficult but if we assume that no vehicles near by suddenly
change plans, the prediction is fairly easy to make. Considering this, taking the alternative route
may not be such a bad choice after all .

Because of conflicts, the convoy-effect in the system increases in time. This effect increases the
chance of confli cts and is self-amplifying.

Dynamic traff ic control of free navigating automatic guided vehicles

- 50 -

Figure 41: Waiting or turning?

In a perfect system no vehicle ever conflicts with another. Maximum efficiency is achieved.
Flow control should try to achieve this state without introducing too large extra costs because of
detours. A balance between avoiding conflicts by incurring detour costs and letting conflicts
happen without detours has to be found.
 The factory's layout of functional points should express this by attempting to spread the
functional points.
 Alternative routes which are fill ed alternatingly force spreading and could break the convoy
effect.

Dynamic traffic control of free navigating automatic guided vehicles

- 51 -

5 Architecture

We want to be able to build a real dynamic traffic controller or a simulation of a dynamic traffic
controller. To do this properly, the architecture of the dynamic traffic controller should first be
designed.
 In chapters 1 and 2 the dynamic traffic control was introduced and some properties were
presented. In chapters 3 and 4 several heuristics were given which all handle a certain sub-
system of the dynamic traffic control. These properties and sub-systems must be present in the
architecture of a dynamic traffic controller as much as possible.
 Because the research about streams was done later than the design of the dynamic traffic
controller, streams are not present in the architecture presented in this chapter. However, the
architecture could be extended without too much difficulty to support streams.

Four sub-systems are identified:
1. collision prediction, which warns the system of possible collisions (conflicts)
2. a knowledge base, holding the bilateral conflict resolution methods
3. field effect analysis, which tells the system which plan is best in a more global context
4. multivehicle co-ordination, which organises the resolution of multiple related conflicts

These four sub-systems operate in sequence on the given data of vehicles (number, location,
tasks assigned to vehicles etc.) and the site layout (location of stations and cargo holds,
refuelling stations, roads etc.).

The four sub-systems operate on each others resulting data. Each sub-system takes the output of
the sub-system before it, transforms it into new data and passes this to the next step in the
processing cycle. The way they do this is given in a functional model which is explained in
section 5.1.

The functionality of the dynamic traffic controller operates on several databases like the site
layout and the vehicle state information. The state of the databases represents the state of the
dynamic traffic controller.
The design of the data structure in the dynamic traffic controller is given in the object model in
section 5.2.

From the data structure and the functionality of the system we derive an algorithm in pseudo-
code which describes the complete process in the dynamic traffic controller. This algorithm is
given in section 5.4.
 With this algorithm the computational complexity of the dynamic traffic controller is derived
in section 5.4. The computational complexity is important because we can see whether or not a
practical implementation is possible and where its execution speed could be improved.

To conclude the discussion on the architecture of the dynamic traffic controller, we shortly
discuss the differences between a centralised and distributed architecture in section 5.5, real
time implementation in section 5.6 and the possibility of parallelism in the presented algorithm
in section 5.7.

Dynamic traff ic control of free navigating automatic guided vehicles

- 52 -

5.1 Functional model

The dynamic traff ic controller contains four sub-systems: the knowledge base containing the
bilateral conflict resolution methods, the field effect analysis, the multivehicle co-ordination
and the coll ision prediction. The multivehicle co-ordination is divided into the dispatcher which
dispatches conflicts in any sensible order to the knowledge base and the executioner which
chooses the best plan and implements it in the vehicles. In figure 42 the architecture of the
dynamic traff ic controller is displayed.
 In this architecture, stream methods are not explicitly used. These could fit into the
knowledge base.

Dynamic traffic controller

Colli sion
prediction

Multivehicle
co-ordination

executioner dispatcher

Field effect
method

Knowledge base

rule 1 rule n

Figure 42: Controller architecture

The collision prediction examines the system and builds a list of tuples (time to collision, v1,v2)
of vehicles v1 and v2 which will probably colli de in time to collision time units if no action is
taken. This is done by estimating the location and orientation of the vehicles in a given time
interval lat according to their current paths. The time interval lat is called the lookahead time.
This is the time interval starting from the current moment in which possible conflicts are
detected and solved. The resulting list L is passed to the multivehicle co-ordination.

The multivehicle co-ordination determines in which order the conflicts in the list L are resolved.
This is called the dispatcher.
 The multivehicle co-ordination can base this order on many things, for example ‘earliest
collision first’ or ‘most difficult to solve collision first’ . Whatever the reason for the specific
order, the multivehicle co-ordination also determines which conflicts are to be solved.
 Unsolved conflicts might disappear automatically or new conflicts can appear because plans
are changed. It is left to the multivehicle co-ordination to decide whether or not these are solved
immediately or left for later.
 The multivehicle co-ordination constructs a sequence of conflicts L’ which holds tuples (time
to collision, v1, v2) of conflicts that it wants to be solved immediately. These are all i solated
conflicts.
 Each conflict in the sequence L’ is passed in order to the knowledge base. Currently we
assume an earliest-collision-first scheduling, meaning that the earliest coll ision should be
resolved first.

Dynamic traff ic control of free navigating automatic guided vehicles

- 53 -

The knowledge base generates one or more plans to solve each confli ct i in the sequence L’ that
it was given by the multivehicle co-ordination.
Each rule in the knowledge base determines for itself if it is applicable to the current
configuration of the conflict i and if so it generates one or more conflict resolution tuples
(cost,plan1,plan2) which each represent a plan to solve the conflict. Each tuple holds the cost of
the plan according to the global available cost function and the plans for respectively vehicle 1
and 2. The set of possible conflict resolution tuples Si for each conflict i in L’ is handed over to
the field effect analysis.

The field effect analysis rewards bonuses or penalties to each conflict resolution plan p in the
set Si.
 To do this, the field effect analysis needs information of the neighbouring vehicles Ni near the
vehicles in the conflict i.
 The field effect analysis does not solve conflicts, but estimates the influence of the plan p on
the neighbouring vehicles Ni. If plan p does not influence the neighbours Ni, the field effect
analysis returns a neutral result, c.q. the cost of the plan p is not modified. If the plan p
introduces costs to the neighbours Ni, the field effect analysis must increase the cost of the plan
p. If the plan p removes costs of the neighbours Ni, the cost of plan p should be decreased.
 The set Si’ of plans with a modified cost for each conflict i are passed back, to the executioner
part of the multivehicle co-ordination.

The multivehicle co-ordination executioner selects the plan p in the set Si’ with the lowest
resulting total cost. This plan is implemented to be executed in the vehicles v1 and v2 of the
conflict i.

This is done until all conflicts in the set L’ have been resolved. At that moment, the collision
prediction can start all over again.

To conclude this section we give an OMT (Object Modeling Technique, [lit. 10]) functional
model of the dynamic traff ic controller in figure 43. The functional model describes where and
what data enters the system, how it is manipulated and what is finally returned. Actors are
displayed inside square boxes. An actor is a more or less independent other system. It
influences the system we look at and causes its execution. Storage is drawn between two thick
horizontal bars. Processes are drawn in ellipses. Simple lines are data transfers between
processes. In the figure the acronym mac stands for multivehicle co-ordination.

Dynamic traff ic control of free navigating automatic guided vehicles

- 54 -

controller
settings

site
layout

vehicle
locations

flow control &
path planner

vehicle
control

coll ision
prediction

mac: dispatcher

knowledge base

mac: executioner

field effect
method

rule 1 rule n

vehicle paths

collisions

for each
conflict

conflict
conflict

plans

weighted plans

executable pathsexecutable paths

logistics

Figure 43: Functional model

5.2 Object model

An object oriented model of the AGV system feels naturally: vehicles, paths, rules can all be
viewed as objects without mind-bending assumptions.

The design notation used is OMT [li t. 10]. The object model is used here. It shows the relations
of the objects to each other. In section 5.1 the functional model was described using OMT.

Figure 44 displays the most important notations used in OMT. The class definition defines
name, attributes and methods of the class. Attributes proceeded by a ‘ /’ are derived from other
attributes and relations. Methods accept parameters and return function results. The short object
declaration is used to simplify relations with other classes. The class can be defined later or
earlier. This also allows decomposing the design in multiple smaller parts, which enhances
legibil ity.

The relation line connects classes of which instances are related. In case of a line only, this is a
one-on-one relation. This means that each instance of that class has a relation with exactly one
instance of the related class and vice versa. A circle on an end of the line means that an instance
of that class participates multiple times (multiplicity, the solid circle) in the relation or is
optional (option, the open circle). Aggregation (the diamond) means that the class is completely
or partially build up of the class at the other end of the relation. Attributes can be assigned to
relations. The participation of a class in a relation can be named.

Dynamic traff ic control of free navigating automatic guided vehicles

- 55 -

Inheritance is the mechanism where a class inherits properties from a parent class. The
inheritance symbol (triangle) points to the super or parent class. The child classes are at the
broad end. Single inheritance is usually used to specify specialisation of child classes. The other
way round the parents can be seen as generalisations. Inherited properties are usually not
redrawn. Multiple inheritance is comparable to single inheritance but the child class inherits
from multiple classes. This can lead to ambiguity between method and attribute names. It can
be avoided by having the donating class’ name precede the property in the child class. In the
design below multiple inheritance caused ambiguity, which was solved, in the definition of
CompoundSegment in figure 47.

Note that the object model given here only tries to model the essence of the traff ic controller.
Trivia and non-essentials are not in the model.

Object name

attributes: of type

methods (params):result

PilotPath

g

start: Position

{area in map} guards

OMT Guide

Class definition
Short class declaration

Relation
Relation attribute

Relation constraint Relation participation name

Multiplicity Optional

Inheritance
Aggregation (part-of)

Figure 44: OMT Guide

Figure 45 shows the model for shapes. Shapes are used to describe the physical outer shape of
objects in the AGV system. All shapes are spatially oriented. This is expressed in the
orientation attribute.

Shapes can generally be divided into ellipses and polygons. These are the Ellips and Polygon
class which both inherit from Shape. Both Ellips and Polygon are therefor oriented shapes
which can be rotated. Ell ips has two extra attributes which define it: width axis and height axis.
Polygon is build up of at least three Positions. A Position is a 2-dimensional co-ordinate.

Dynamic traffic control of free navigating automatic guided vehicles

- 56 -

Derived from Ellips is the specialisation Circle. A Circle has equal width and height axis which
is called the radius. Derived from Polygon is the Rectangle which is defined by a length and
width attribute but otherwise behaves as a Polygon. Other shapes could be derived if necessary.

Note that no shape holds positional information. This is done because positional information is
not essential to the shape but to the context which the shape is placed in.

Position

x: number
y: number

Shape

orientation: angle

Ellips

width axis: number>0
height axis: number>0

Polygon

Rectangle

length: number>0
width: number>0

Circle

radius: number>0

3+

offset

Figure 45: Modelling shapes

Figure 46 shows the modelling of vehicles and areas. Both Vehicle and Area inherit from
Shape. With this it is expressed that for the traffic control vehicles and areas are basically
viewed the same. By inheriting from Shape, Vehicle and Area can also be for example
Rectangles or Circles which can be rotated and can have any dimension.

Each Area has a name and an access boolean attribute. The access attribute indicates whether or
not the area is accessible by other objects like vehicles. Area is specialised in four ways:
Preferred Area, Free Area, Reserved Area and Occupied Area, as discussed in section 1.1.2.

Each Vehicle also has a name. It is related to a PilotPath which holds the route it should travel
and a ExecPath which holds the actual trajectory the vehicle is going to follow. The progress
along the executable path is indicated by the relation attribute step. With the executable path
and the step attribute the attributes position, direction and speed can be derived.
 The method planat requires a time offset. It returns the situation of the vehicle at that moment
in time. It can be used to predict the state of the system at a certain moment in time. The drive
method tells the vehicle it should follow the executable path for a while, indicated by the
parameter speed.

Derived from Vehicle are Rectangular Vehicle and Circular Vehicle which define vehicles with
often used shapes.

Dynamic traff ic control of free navigating automatic guided vehicles

- 57 -

Vehicle

name: string
/position: Position
/direction: angle

/speed: number>=0

planat(time):Vehicle
drive(speed)

PilotPath

ExecPath

Shape

step: number>=0

Rectangular Vehicle

length: number>=0
width: number>=0

Circular Vehicle

radius: number>=0

Area

name: string
access: boolean

Prefered Area

access = true

Free Area

access default = true

Reserved Area

access default = false

{shape is rectangle} {shape is circle}

Occupied Area

access = false

Figure 46: Modelling vehicles and areas
Figure 47 shows the modelli ng of paths and segments. Segment describes the basic straight
segment. It is defined by length and direction. Two methods, at and angleat, allow information
on the state of the segment at a specific place to be retrieved. This is done by a fraction.
fraction is a real number in [0..1].

Derived from Segment are WaitSegment, which holds a vehicle for a period of time specified
by delay, and CurveSegment which defines a curved segment. It has attributes radius of curve,
start angle of curve (in rad, clockwise, from 12 o’clock) and arc of curve (in rad, begins at start
of curve, positive is clockwise, negative is counter-clockwise).

PilotPath consists of a number of consecutive segments each starting where the previous one
ended. The length of a PilotPath is derived from the length of the segments.

Dynamic traffic control of free navigating automatic guided vehicles

- 58 -

PilotPath

/length: number >=0

at(fraction):Position
angleat(fraction):angle

Segment

length: number>=0
direction: angle

at(fraction):Position

angleat(fraction):angle

WaitSegment

delay: time>=0

CurveSegment

radius: number>=0
start: angle
arc: angle

CompoundSegment

/PilotPath.length: number>=0

PilotPath.at(fraction):Position
PilotPath.angleat(fraction).angle

RASegment

axis: angle
beta: angle

straight: number >=0
radius: number >=0

ExecPath

/duration: time
speeds: [speed]

speedat(fraction):speed

{ordered}

{ordered}

Figure 47: Modelling paths and segments

Derived from PilotPath is ExecPath which adds velocity information to each segment in the
path. Instead of a derived length attribute it has a derived duration attribute. It also adds a
speedat method which returns the speed at a certain place in the executable path.

CompoundSegment inherits from both PilotPath and Segment. A CompoundSegment, like a
PilotPath, consists of several consecutive segments. It inherits the ambiguous methods and
attributes from PilotPath. The CompoundSegment can be used to form complex segments from
simple ones. We could also have modelled segments as simple paths. The compound segment
and pilotpath would then have been the same.

Dynamic traffic control of free navigating automatic guided vehicles

- 59 -

 The RASegment (the roundabout segment) is an example of a compound segment. It is
defined by the direction of the original straight path, the angle of deviation beta, the length of
the straight segments within it and the radius of the curved segment of the roundabout.

Rule

evaluate(Vehicle1,Vehicle2):[cost,plans]

Map

operates on

Area

PilotPath

guards

guards

at: fraction in [0..1]

Reserved Area

Station

...

action(Vehicle)

Blocking

Semaphore

capacity: number>=0

free: number>=0

claim(Vehicle,n)
release(Vehicle,n)

Binary semaphore

capacity=1

claim(Vehicle)
release(Vehicle)

Advancing

Roundabout

Swirl

Deviation

Figure 48: Modelli ng rules

Figure 48 shows the modelling of rules. The rule class has no specific attributes but every rule
has the evaluate method used to evaluate itself for a conflict between two vehicles. The
evaluate method returns a list of plans together with their costs. A Rule operates on a Map and
can guard zero or more PilotPaths and Areas. The relation attribute at defines at which point of
a PilotPath a Rule should guard.

Dynamic traffic control of free navigating automatic guided vehicles

- 60 -

Derived from Rule are the several knowledge rules in the dynamic traffic controller, Blocking,
Advancing, Roundabout, Swirl, Deviation et cetera. They do not define new functionality, but
implement the evaluate method in a unique way.
 The Semaphore rule models semaphores. The general semaphore has a capacity n. A vehicle
can claim v of this and must release it later. The free attribute contains the free capacity. A
specialisation of the semaphore is the binary semaphore with a capacity of 1.

Derived from both Rule and Reserved Area is a Station. A station is a place where a vehicle can
go to with a specific purpose, for example a power supply or loading dock. The physical
presence of the station is represented by a Reserved Area. The functional aspects of the station
are expressed by the Rule. This rule for example can hold access mechanisms.

Map

name: string

Free Area

PilotPath

Rule

Area

Vehicle

offset: Positionoffset: Position

start: Position

{area in map}

Field Effect

range: number>=0

bonus(plan):score

Multiagent Coordination

coordinate([Vehicles])

Figure 49: Modelling map, field effect methods and multivehicle co-ordination

Figure 49 shows the modelling of the site layout, the field effect method and the multivehicle
co-ordination. The class Map models the site layout. Each Map has a name. Each Map consists
of a collection of Areas, Vehicles, PilotPaths and Rules. The first three are positioned
somewhere in the map. This is indicated by the relation attributes offset and start. The relation
with areas must be restricted to areas which physically fit in the map. A Map inherits from Free
Area to indicate that the whole of a map can be accessed by vehicles.

Dynamic traffic control of free navigating automatic guided vehicles

- 61 -

Field effect method and multivehicle co-ordination are both modelled as class to allow different
implementations.
 Every field effect method has the attribute range in which it is active and a method bonus to
assign a bonus or malus to a plan.
 Every multivehicle co-ordination method has a method coordinate to co-ordinate the conflicts
between all vehicles in the map.

5.3 Dynamic traff ic controller algor ithm

We will now give the algorithm of the presented architecture of the dynamic traffic controller
and derive the computational complexity of it in the next section.
 The algorithm is mostly based on the functional model given earlier in this chapter and the
theory presented in chapter 4.
 Assume lat is the lookahead time of the system. This is the time interval starting with the
current moment in which it can detect and solve possible conflicts. Vehicles is the set of all
vehicles in the system. Rules is the set of all rules that operate on the system.

The traffic controller algorithm
collision prediction
1. predictions := ∅ # set of predicted collisions
2. for all pairs (v1,v2) with v1≠v2

3. if conflict (v1, v2) within lat:
4. predictions := predictions+(time to collision, v1, v2)

multivehicle co-ordination: dispatcher
5. sort predictions to smallest time to collision
6. with v1,v2 in first of predictions:
7. from predictions remove all other conflicts involving v1 or v2

knowledge base
8. with v1,v2 of first prediction mentioned in line 6
9. solutions := ∅ # set of possible solutions
10. for rule in rules:
11. add to solutions the evaluation of rule in context of conflict

field effect analysis
12. for neighbour in neighbours of v1:
13. cost := cost + evaluation by neighbour of plan1

14. for neighbour in neighbours of v2:
15. cost := cost + evaluation by neighbour of plan2

multivehicle co-ordination: executioner
16. sort solutions to lowest cost
17. set plans of v1 and v2 to best solution
18. predictions := tail (predictions)
19. goto 6. until predictions = ∅

5.4 Computational complexity

The computational complexity of this architecture depends on each of the four sub-systems
described earlier in this chapter.

Dynamic traffic control of free navigating automatic guided vehicles

- 62 -

The computational complexity of this dynamic traffic controller is a large ()3nΟ where n is the
number of vehicles. However, this computational complexity for moderate n probably remains
low enough to implement the traffic controller in a real-time environment, especially because
the algorithm is well suited to be run in parallel. This is discussed in section 5.7.
 The computational complexity of the controller is measured in the number of constant time
steps the algorithm has to make. As usual a worst-case complexity is derived. This is done in
several steps that are combined later.

Production of colli sion prediction set

As can clearly be seen in the algorithm, the production of the prediction set involves
()
2

1−⋅ nn

steps because the set contains at most
()
2

1−⋅ nn
 elements. This is complexity ()2nΟ .

Multivehicle co-ordination: dispatcher

Sorting the set takes
() ()

 −⋅−⋅

2

1
log

2

1 nnnn
steps.

Therefor complexity of this step is

() ()

 −⋅⋅−⋅

2

1
log

2

1 nnnn
= ()22 log nnΟ = ()nn log2 2Ο =

()nn log2Ο .

Evaluation of the rules

For each element in the prediction set (max.
()
2

1−⋅ nn
 elements) we evaluate each rule. If we

assume that the evaluation of one rule is done in constant time, the complexity of the rule
evaluation is also constant. This is true because the number of rules is also constant. The
complexity of rule evaluation therefor is

() ()2#
2

1
nplans

nn Ο=

 ⋅−⋅Ο

Field effect analysis
The neighbour request method is used, so for each plan devised by the rules, each neighbour is
asked its opinion. Each vehicle in a conflict has at most 2−n neighbours (all vehicles except
those in the bilateral conflict). After that the results for all plans are sorted, which is constant
because the number of rules is constant. This gives

() ()22#
2

1 −⋅⋅⋅−⋅
nplans

nn

which is of complexity ()3nΟ .

Dynamic traff ic control of free navigating automatic guided vehicles

- 63 -

Complexity of the controller in total
The total complexity of the controller is the sum of the three parts: prediction, evaluation and
collision avoidance and amounts to:

()2nΟ + ()22 log nnΟ + ()2nΟ + ()3nΟ = ()3nΟ
From this we see that the field effect analysis is the dominant factor in the computational
complexity.

5.5 Centralised vs. distr ibuted

During the research on this thesis complete and correct availabil ity of information was
assumed. This is more li ke a centralised than a distributed approach. A distributed approach
however is not infeasible and provides a valuable alternative.

In a centralised system the main computer system is clearly the bottleneck. Communication can
be kept to a minimum since vehicles only have to receive new orders. Scalabili ty is somewhat
limited by the main computer system's scalability.

In a distributed system local intelligence (the AGVs decision making hard- and software)
onboard the AGVs can be kept to a minimum: only enough computing power to provide
solutions for this one AGV is needed. Communication however is heavily used, because the
AGVs must somehow co-ordinate their decisions and state information. This state information
can be incorrect (missing or garbled communications for example) which leads to lower
efficiency. The scalabili ty is limited by the available communication bandwidth.

Taking into account the current advance of processing technology over communication
technology, the centralised approach seems more appropriate for current AGV systems.

5.6 Real-time aspects

The multivehicle co-ordination is processed continuously or on a regular time basis in real-time.
The process must either be schedulable in hard real-time or be an anytime9 process.
 The dynamic traff ic controller as presented up to now is not very suitable for hard real-time
because the number of conflicts to solve can vary wildly even if parameters like available rules,
lookahead time and so on are fixed.
 It is very suitable to be implemented as an anytime process. One simple rule, for example
blocking, could be used to have an answer ready soon. Other rules are evaluated whenever there
is time. When more rules evaluate, the results are likely to become better.

5.7 Parallel processing

The knowledge base evaluates several rules. Usually this is done on one processor, but the
approach presented here is very suitable for parallel processing.
 Predicting coll ision can be done in parallel. Each rule could be processed in parallel. Isolated
conflicts (those conflicts which do not share mutual neighbours) can also be processed in
parallel.
 This would reduce the time complexity, depending on the number of processors used.

To support this case, we present a parallel algorithm for the dynamic traff ic controller.

9 An anytime process provides a solution after a short fixed time but produces better results if more time is available.

Dynamic traffic control of free navigating automatic guided vehicles

- 64 -

The parallel traffic controller algorithm
collision prediction
1. predictions := ∅ # set of predicted collisions
2. for all pairs (v1,v2) with v1≠v2 do parallel:
3. if conflict (v1, v2) within lat:
4. predictions := predictions+(time to colli sion, v1, v2)

multivehicle co-ordination: dispatcher
5. construct set isolated of isolated earliest conflicts out of predictions
6. with each pair (time to colli sion, v1,v2) in isolated do parallel:

knowledge base
7. solutions(i):= ∅ # set of possible solutions for isolated conflict i in isolated
8. for rule in rules do parallel:
9. add to solutions(i) the evaluation of rule in context of isolated conflict i

field effect analysis
10. for neighbour in neighbours of v1 of conflict i do parallel:
11. cost(i) := cost(i) + evaluation by neighbour of plan1

12. for neighbour in neighbours of v2 of conflict i do parallel:
13. cost(i) := cost(i) + evaluation by neighbour of plan2

multivehicle co-ordination: executioner
14. sort solutions(i) to lowest cost
15. set plans of v1 and v2 in conflict i according to cheapest solution in solutions(i)
16. goto 5. until predictions = ∅

We see that almost the entire algorithm can be run in parallel because each isolated conflict can
be handled in parallel. Especially the most time consuming inner loop of the field effect
analysis can be flattened by parallelism.
 Without proof we note that on n3 processors the computational complexity of this algorithm
reduces to a constant.

Dynamic traff ic control of free navigating automatic guided vehicles

- 65 -

6 Simulation

To support previous research in the field of static traff ic controllers two major (simulation)
tools have been developed. These are called RoadPlan 0 and RoadPlan. The tools proved to be
very useful in analysis of given situations and formed test platforms for new ideas. Almost in
the beginning of this graduation work it was decided that the results should be contained in a
simulation tool, preferably one that co-operated with the old RoadPlan programs.

The simulation tool has been developed and is called Roadplan v2.0. It can be used as an
analysis tool for de facto problems, but its main purpose is support for further development of
the dynamic traff ic controller.

6.1 Roadplan v2.0

Roadplan v2.0 (short: Rp2) is a simulation tool for dynamic traff ic control. It does this by
simulating the functionality of the dynamic traff ic control and abstracting time.

Not all ideas discussed in this thesis have been implemented yet. A subset was chosen and
implemented to show that the idea is viable.

Rp2, like the dynamic traff ic control presented in this thesis, is 'rule driven'. This means that a
set of knowledge rules determines how the simulation evolves. Examples of rules are the
bilateral conflict resolution methods discussed earlier in this thesis li ke advancing and
roundabout. Rp2 offers a framework with data structures and GUI (Graphical User Interface).
Rules can be added to maps arbitrarily, once programmed, to research their effect.

Currently Rp2 offers two bilateral conflict resolution methods: advancing and roundabout.
Program code for the two field effect solutions are available. Neighbour request is integrated by
default in the tool. The multivehicle co-ordination algorithm is also integrated.

The tool is discussed in more depth in appendices B.1 and B.2.

6.2 RoadPlan compatibili ty

For several reasons Rp2 is not directly compatible with older RoadPlans. In order of importance
these are:

• Incompatibil ity of concepts; static controllers do not support off- track locations. Though a
dynamic controller can contain static controller behaviour, it would be a burden to start
with.

• Difference of implementation design; older RoadPlans are programmed in C, are not
object-oriented and have very limited GUI support. This leads to faster, but less flexible
and less clear programs. The new Roadplan is programmed in Python, completely object-
oriented and has extensive GUI support. Execution is slow but extending the tool is
relatively easy.

• Lack of documentation; older RoadPlans come without documentation. Understanding the
source code would probably take more time than writing new code.

• Unfinished state; older RoadPlans are not completely finished and/or contain bugs. By
reducing the complexity of the system, errors in Rp2 are hopefully reduced.

Dynamic traff ic control of free navigating automatic guided vehicles

- 66 -

6.3 Implementation

Programming a tool as large as Roadplan v2.0 requires good tools to begin with. Nowadays a
plethora of programming languages exist, each a specialist in a certain way. Well-known
languages are C, Java and Tcl. Why choose for a relatively unknown language li ke Python?
Reasons are plenty. The choice for Python will be explained here. A short introduction in the
language is provided in section B.1.1.

6.3.1 Not C++

C++ is a powerful language with reasonably good object-orientation. However, C++ was never
intended to be a prototyping language. Besides inheriting nightmares from C, C++'s primary
concern is execution speed and memory usage. Artefacts like pointer reference and dereference,
clumsy notations for logical operators and loop constructions, tens of inconsistent brackets,
very simplistic primitives and code that is very hard to read are everything RAD (Rapid
Application Development) is not.

6.3.2 Not Java

Java is a platform independent, interpreted, object-oriented language, which is good. However,
it was presented as the successor of C++. Java in itself is not a very clear language. It is twice
as slow as Python. The usually mentioned strong points of Java for example in Intranet and
Internet solutions are irrelevant here.

6.3.3 Not Tcl

Tcl, like Java (and Python) is an interpreted language. Tcl, like Java, is currently under
development at Sun. It is a RAD language with strong primitives, but, though Sun promotes it
as such, it was never to be used as a language for large projects. Tcl has no data types other than
the string10. A string is always a piece of Tcl code. Support for lists and C integration is
provided, but it does not support objects, modularity and real values (values are interpreted Tcl
code). These properties make Tcl a powerful language for fast development for small glue-li ke
applications but hopelessly inefficient for larger projects.

6.3.4 Python

Python [lit. 11] is an interpreted, platform independent, object-oriented language. Like in Tcl, it
is relatively easy to embed Python into C++ or integrate C++ into Python. It is a RAD language
with very strong primitives and weak typing. It comes with several standard libraries which
together with the core provide very flexible, yet powerful standard functionality li ke GUI, lists,
dictionaries, strings, unlimited integer precision, persistent databases, math, standard OS
functions, objects (including dynamic, selective multiple inheritance).

Python is pre-compiled into pre-compiled Python code. This pre-compiled code is executed in
the (extendable, modifiable) C++ core. Standard primitives are integrated in the C++ core. This
makes Python faster than most interpreted languages.

Python is free-ware. It can be modified, sold and used in products without any li cense. The
source code can be downloaded from the Internet without any extra costs.

Python syntax is very clear and straightforward. The tab character is used for block notation
which enhances code readability. Together with object and module support, a Python programs
needs never to become unreadable.

10 The latest release of Tcl is supposed to use internal datatypes other than string to enhance performance.

Dynamic traff ic control of free navigating automatic guided vehicles

- 67 -

Python typing is weak. This means that declaration of variables is not needed, but assignments
to variables must be type consistent (floats, integers and unlimited integers are considered type
equal). Lists and dictionaries can contain any (different) type of items. Experience showed that
lack of variable declaration is not always wanted and sometimes even counter-productive.
Python could be extended to allow for non-committing variable declaration.

Python was developed by Guido van Rossum at the CWI in Amsterdam. Currently it is under
development by van Rossum at the CNRI in Reston, USA. A Python compiler does not yet
exist. The language is however very suitable for compilation and progress is being made.

The Python community is very active and organised in the PSA (Python Software Activity).
Several joint projects are run by the PSA. On the WWW, the Python homepage can be found at
http://www.python.org

6.3.5 The model

The model used for the data structure is a subset of the object model described in section 5.2.
Speed factors, the Station class, the Semaphore class, guards and all areas have been left out.
The functional model presented in section 5.1 has been implemented. A GUI and file I/O have
been wrapped around it. The advancing rule had to be changed somewhat to allow for non-
straight paths.

The speed of a vehicle that is unhindered is always at maximum. The maximum speed is 1 per
unit of time and cannot be changed.

The time-loss estimation in the neighbour request field effect method cannot be implemented
because the bilateral conflict resolution methods are not suitable for all configurations of
vehicle paths and vehicle shapes.
 Instead, it is implemented by finding the possible time to coll ision ttc generated by the new
plan. We assume that no conflict existed originally between the vehicle and its neighbour. The
ttc therefor is subtracted from the lookahead time lat. This is an estimation of the importance of
the conflict: the lower ttc, the sooner the conflict wil l occur. Sooner conflicts are usually harder
to solve and are therefor more expensive.
 Notice that this estimation only assigns positive costs to a plan; negative costs are not derived
and completely ignored.

The multivehicle co-ordination is not directly suited to be implemented by discrete time.
Situations can exist where new conflicts arise within one time interval. The multivehicle co-
ordination as presented in section 4.3 normally works continuously and does not have this
problem: new conflicts are handled with just a li ttle bit later so new conflicts are always solved
in time.
 A workaround has been provided by the implementation of coll ision avoidance as an ‘escape
level’ . Coll ision avoidance is a very-short-term version of advancing. If two vehicles are about
to coll ide within one time interval, one or both is stopped. After the application of the usual
knowledge rules, collision avoidance is applied until no more immediate collisions are present.

Dynamic traffic control of free navigating automatic guided vehicles

- 68 -

6.4 Evaluation

The maps used for the simulations are divided into three groups: implementation test maps,
maps with rectangular crossings of convoys and complex maps.
 The implementation maps have been used to test the basic bilateral conflict resolution. All
tests perform fine in the current implementation of Rp2. No collisions occur and the results with
roundabout are better than those when using only advancing.

Map Situation
testra 2 vehicles cross under 90°
testra2 2 vehicles cross under sharp angle (ca. 45°)
testra3 2 vehicles cross under wide angle (ca. 135°)
threesquares 3 vehicles driving on overlapping squares
vijfoprij 5 vehicles in a stream

Table 1: Implementation test maps

The convoy crossing maps have been used to test neighbour request and motion field on simple
situations. Both perform equally well here.

Map Situation Motion field Neighbour
request

stream2_2 2 vehicles from above and 2 from the
left cross under 90°

+ +

stream3_3 3 vehicles from above and 3 from the
left cross under 90°

+ +

stream4_4 4 vehicles from above and 4 from the
left cross under 90°

+ +

stream4_1 4 vehicles from the left and 1 from
above cross under 90°

+ +

Table 2: Maps with r ight crossings of convoys

The complex situations are used to test more or less realistic situations with a lot of vehicles
close together with many conflicting paths. Motion field does not perform well here, especially
the chaos map was done very bad. Neighbour request handles these situations well, but it
could be better.

Map Situation Motion field Neighbour request
chaos 3 vehicles from above and 6 from the left

cross in four streams under 90°
-- -/+

thesis See figure 32 on page 41. ? -/+
Table 3: Complex simulation maps

We will now discuss one simulation example, the thesis map, into detail.

6.4.1 The Thesis map

The thesis map is the layout of figure 32 on page 41. It contains 10 vehicles. Both the
advancing and full roundabout rules have been used in the simulation. The vehicles are sized

2040´=´ wl size units. The simulation settings are 120 time units for lookahead time, 16 for
the time interval grid (the simulation makes steps of 16 time units) and 200 distance units for
the neighbour range. The maximum speed of a vehicle corresponds to exactly one distance unit
per time unit. Size units equal distance units. The original layout is shown in figure 50.

Dynamic traffic control of free navigating automatic guided vehicles

- 69 -

1

2

3

4

5

67 8 9

10

step 1

Figure 50: Simulation thesis map step 1

1

2

3 4

5

67 8 9

10

step 2

Figure 51: Simulation thesis map step 2

Dynamic traffic control of free navigating automatic guided vehicles

- 70 -

1 2

3

4

5

6

7 8 9

10

step 6

Figure 52: Simulation thesis map step 6

2

1

3

5

4
10

6

7 8 9

step 13

Figure 53: Simulation thesis map step 13

Dynamic traff ic control of free navigating automatic guided vehicles

- 71 -

1

2

3

4

5

6

7 8 9

10

step 18

Figure 54: Simulation thesis map step 18

Vehicles are numbered from 1 to 10 and notated by vi. Conflicts are notated by cij which is the
conflict between vehicle vi and vj.

During the first step of the simulation two conflicts are resolved as can be seen in the screen
dump of step 2 in figure 51. Let us follow the dynamic traff ic controller and see what it does.
As is shown in figure 43 on page 54 the processing of the dynamic traff ic controller starts with
the coll ision prediction. The coll ision prediction finds two conflicts: c12 in 32 time units and c35

in 96 time units. Because c12 happens first, it is resolved first.
 Advancing suggests two plans p1 and p2. p1 is the plan where v1 waits, p2 is the plan where v2

waits. Roundabout suggests one plan p3. These plans are now all evaluated for field effects by
the neighbour request method.
 The neighbour set of v1 consists of all vehicles except v1, v2 (both in the conflict) and v4 (too
far removed). The neighbour set of v2 equals the neighbour set of v1 in this case11. None of the
plans is modified by the neighbour request because none of the neighbours is influenced. The
cost of p3 is estimated at 27 time units total, for p1 and p2 the cost is estimated at 80 total. This
coincides with the theory (allow for inaccuracies because of the large time step). p3 is the best
plan and is executed.
 c35 is comparable with c12. Here too the roundabout plan wins.

Figure 52 shows the situation before the 6th step of the simulation. v1 and v2 are rotating on the
roundabout. In the 13th step, shown in figure 53, we see two new conflict resolvements
displayed: c24 and c17.
 c24 is a nice example of two opposite vehicles crossing each other by means of a minimal
roundabout. The incurred total time loss is only 4.7 time units, which is about 11% of a
vehicle’s length.
 c17 is a somewhat unfortunate conflict. If in the previous conflict c12 v2 would have waited,
conflict c17 would not have happened. The result is that the roundabout to resolve c12 was, seen
from this point of view, superfluous. This is the price we pay for short-sightedness.

11 This is almost always true. To reduce the time needed for neighbour set generation the same set could perhaps be used for both
vehicles in the confl ict.

Dynamic traff ic control of free navigating automatic guided vehicles

- 72 -

Figure 54 shows the situation before the 18th step. c9,10 is resolved by advancing of v10. In the
simulation results we discuss why this is not the correct way to solve this conflict. A
roundabout should have been used.
 This final picture shows to peculiarities. A rather strange conflict (due to a jump of v1) c14 is
resolved by advancing. Due to numerical approximation, the roundabout of conflict c24

apparently was not large enough. A new, very small , roundabout has been placed at the end of
the first roundabout. This should not happen of course. Enlarging the roundabout radius would
solve the problem, but also lowers the accuracy of the simulation.

6.5 Simulation results

Running a number of simulations showed some expected and unexpected results. They are
discussed and explained here.

The neighbour request field effect solution, even in its primitive implementation form, is sound
and outperforms the motion field solution. This is especially true in more complex situations
like in the cha os map. If motion field is used, the roundabout is used in situations where it
would severely hinder other vehicles. For example, in the chaos map, all conflicts are solved
by a roundabout which completely block the vehicles in the horizontal streams.
 The simulations also showed that neighbour request always favours large streams over small
streams or single vehicles. This is because more vehicles are present in a large stream, so more
neighbours can complain.

The multivehicle co-ordination is not always reliable. This is mainly due to two reasons. First,
the discrete time allows new conflicts to arise without giving the co-ordination a chance to
solve the conflict. The multivehicle co-ordination makes no attempt to prevent new conflicts
from arising. Sometimes this can lead to conflicts which are within one time interval,
disallowing the implemented multivehicle co-ordination to react.
 Second, the rules in the system are not always applicable. Some configurations of vehicles
exist where no subset of advancing and full roundabout has an answer. Since advancing is
always possible, this tells us an error has been made in the implementation of advancing.
 In the previous section, conflict c17 was an example of a conflict which was not solved by
advancing or another rule. Instead, it was solved by the ‘escape level’ collision avoidance. In
this case, performance was not influenced by the use of collision avoidance. However, collision
avoidance is not free from mutual deadlock and situations can arise where coll ision avoidance
leads to mutual deadlock.
 If the traff ic control uses collision avoidance to solve a conflict and this conflict clearly
existed for a while, it indicates that something went wrong during the evaluation of the
knowledge rules. This can be used to find errors in the implementation or concept.

Experience showed that mutual deadlock is a serious danger. Bilateral conflict resolution
methods must be free of mutual deadlock as was explained in section 3.3. The help of
resolution methods is called for every time a conflict exists. Even a slight chance of mutual
deadlock appears to result in frequent deadlock behaviour.
 Mutual deadlock can occur because of conceptual or implementation errors. An earlier
implementation of advancing was erroneous and often resulted in mutual deadlock. It has been
replaced by a version which is not always but mostly free of mutual deadlock12.

12 Guaranteeing deadlock freeness in the current implementation would be too expensive in Python and would slow down the
simulation unnecessarily. In appendix B.1.3.4 it is explained why. The implementation of advancing is discussed here too.

Dynamic traff ic control of free navigating automatic guided vehicles

- 73 -

Reduction of normal, cyclic deadlock between more than two vehicles is not feasible without a
knowledge rule li ke autonomous deviation. The set of roundabout and advancing certainly is
not enough to improve this. Autonomous deviation should be the next rule to implement so the
simulation can show the complete, intended behaviour of the dynamic traff ic controller.

Time is simulated in steps. Surprisingly the step size is rather unimportant and can easily be as
large as half of the vehicles' length without major effect on the simulation results. A good
example is the thesis map which was presented in section 6.4.1.
 The relative unimportance of the size of the time intervals can be explained by the knowledge
rules which create plans on terms equivalent to several vehicles' lengths.

In older implementations, not all rules could evaluate for the maximum lookahead time in a
simulation run. This resulted in rules which were less often used than possible. It is explained
by the way in which conflict resolutions are chosen.
 As soon as a conflict is noticed, the best proposed plan is selected and the conflict is resolved.
Usually a conflict is first noticed at the maximum lookahead time. If a rule cannot propose a
plan for that lookahead time, it cannot be selected. As a result, the rule is chosen much less
often than would be possible.

The development for general knowledge rules for multiple vehicles is not easy. This is caused
by the lack of powerful primitives. Conceptual simple expressions like 'behind' or 'free space'
are not present in a simple form.

More complex situations are not easy to test. Deadlock can occur easily in these situations.
Since there is no deadlock resolving present in the simulation tool, the simulation results would
be meaningless.
This can be solved be either introducing the deviation rule or a deadlock resolvement strategy.
Introducing deviation seems the natural choice for the moment because it fits the dynamic
traff ic control better and does not need a path planner to operate.

The simulation is sufficiently fast to suggest that a real-time implementation is feasible. In the
current implementation the only real optimisations are the ‘maximum range scanning only’ if a
previous coll ision prediction did not find any possible coll isions within the lookahead time and
restricting coll ision checks to vehicles within neighbour range.
 The algorithm of coll ision prediction could probably be improved a lot. Currently, the
position and orientation of vehicles are predicted and checked for coll ision. In [li t. 1-8] methods
are given to derive collision areas from crossing paths. However, these are not suited for
dynamic traff ic control without some modification.

Overall , the approach is successful in reducing time-losses, though some situations still exist
where the result could be better. The applicabili ty of rules should be extended to general path-
shapes. It is expected that more profit can be gained by improving the field effect methods and
multivehicle co-ordination than by improving crossing methods. Introducing autonomous
deviation probably wil l also boost performance.

Dynamic traff ic control of free navigating automatic guided vehicles

- 74 -

7 Conclusions

This final chapter presents the conclusions of this research and recommendations for further
research. A dynamic traff ic controller based on knowledge rules and on-line rule evaluation was
presented.
 The traff ic controller has been inspected from several views. On the qualitative side the
functional and object model of the architecture were produced. On the quantitative side several
optimisation algorithms operating on different scopes were introduced and shown to make
sense.
 The viability of the system has been proven by the construction of a simulation tool. It was
shown that the dynamic traff ic controller presented in this thesis offers high performance, good
robustness to failures and errors and scalability for the cost of a higher system- and
computational complexity. It was also demonstrated that implementation in a real-time
environment is likely to be possible by using an anytime approach.
 The dynamic traff ic control offers increased performance in multiple areas: time-loss, energy
use, throughput and better use of available space. Because the architecture of the dynamic
traff ic controller is based on a knowledge base with cost function, rules can be added easily
which enhance performance of any kind of cost parameter.

To minimise the average time-loss induced by crossing conflicts on a local scale, several
bilateral conflict resolution methods have been presented. The three most important ones are
blocking (used in static traff ic control), advancing and full roundabout. Well-defined
mathematical backgrounds and expressions for the average time-loss have been derived for
these methods.
 Several other concepts, shrunken roundabout, advancing roundabout, swirl and single-sided
deviation, were shortly discussed. These methods are not provided with complete background
or expressions for average time-loss.
 The three important methods were compared to each other. Depending on the angle of
intersection, either advancing (for sharp angles or long vehicles) or full roundabout (for straight
or wide angles or short vehicles) is the best resolution method with the smallest average time-
loss. Blocking is always outperformed.
 Dynamic traff ic control allows a combination of rules to be exploited. The combination of
advancing and full roundabout can establish a reduction of the average time-loss, compared to
blocking-only, of 80%. This result is not uncommon and peak performance even indicated a
99.7% improvement.

Bilateral conflict resolutions must not introduce a chance of mutual deadlock. Resolution
methods with inherent mutual deadlock states must be improved so that these states are
impossible to reach. Simulation showed that mutual deadlock occurs frequently if it is not dealt
with properly.

Smart conflict resolution methods like advancing and roundabout should be accompanied by a
good field effect solution heuristic. This heuristic co-ordinates the use of plans on a larger scale
than the rules can manage, but not on a completely global scale. Instead, a relatively small area
called the neighbourhood of the vehicles in conflict is inspected.
 Two ways to estimate the field effect were presented. The motion field analysis compares the
average ‘pressure’ by other vehicles on a conflict with the resulting motion vector of a plan to
solve the conflict. Difficulties with this method are the determination of the resulting motion
vector of a plan and finding a suitable relation between difference of the vectors and the cost.

Dynamic traff ic control of free navigating automatic guided vehicles

- 75 -

The neighbour request algorithm estimates the field effect by evaluating suggested plans for
neighbours of the conflicting vehicles. A difficulty with this approach is the estimation of the
cost of an isolated conflict between a neighbour and one of the vehicles in the investigated
conflict.
 A somewhat different approach had to be used to implement the algorithm into the simulation
tool. This approach estimates the cost by assuming no conflicting exist with neighbours and
than assigning a cost to any new conflict. This cost is larger if the conflicts appears sooner.
 Simulation showed that the neighbour request algorithm is better than the motion field
algorithm, even with its sub-optimal implementation.

The crossing of streams is closely related to bilateral conflict resolution and field effect
analysis. It can be seen as a well-defined neighbourhood for a conflict.
 Three methods were presented: batch, carousel and twist. Batch is closely related to
advancing. Carousel is closely related to full roundabout. Twist is a combination of batch and
carousel. For these three methods expressions for the average delay per vehicle have been
derived.
 As with bilateral conflict resolution methods, these three methods were compared to each
other. Depending on the angle of intersection, one of the three methods performs best. For sharp
angles or large batches, batching is the best method. For straight angles and short vehicles, the
twist is the best method. For wide angles or long vehicles, carousel is the best option.

If multiple vehicles are present in a system, multiple conflicts can occur at the same time.
Conflicts can be related to conflicts or confli ct resolutions. A multivehicle co-ordination is
needed to solve this problem.
 A multivehicle co-ordination which isolates the earliest conflicts and solves these was
presented.
 The multivehicle co-ordination method had to be changed a li ttle bit to allow for an
implementation in discrete time. An ‘escape level’ was added by means of a check for
collisions after the isolated conflicts have been solved. This escape level is needed, because the
discrete time intervals make it possible for new conflicts to arise within one time interval. Such
conflicts are not spotted in time by the regular algorithm.
 Simulation showed that the presented approach usually works fine.
 However, the multivehicle co-ordination could certainly be improved. Theory about
multivehicle co-ordination can be found in [lit. 18]. The presented approach can also be found
there (discussed very briefly and in a somewhat different form). Other criteria are given to
optimise the order in which conflicts are solved.

Field effect and multivehicle co-ordination heuristics are not restricted to dynamic traff ic
control. They can also be used in static control systems and, more difficult, in full autonomy
systems.
 Field effect analysis in a static controller takes the form of a general priority mechanism
which gives priority to options which disturb the neighbourhood the least. In a full autonomy
system it would mean a reduction of autonomy, also called ‘f avours’ in literature [lit. 18], and
involve a lot of communication because the vehicles much negotiate the favour.
 Multivehicle co-ordination is applicable in any system where conflicts are present. The order
in which conflicts are resolved may have much influence on the performance of the entire
system.
 Both heuristics can increase the efficiency of any system if chosen well.

The architecture of the dynamic traff ic control presented in this thesis was given. It contains
four sub-systems: collision prediction, multivehicle co-ordination, a knowledge base holding
the conflict resolution methods and field effect analysis.
 An object and functional model of the dynamic traff ic control were presented. The object
model described the data structures in the system. The functional model describes the
communication between the different sub-systems.

Dynamic traff ic control of free navigating automatic guided vehicles

- 76 -

Derived from the object model, the function model and the domain knowledge, an algorithm is
given which implements the high-end of the dynamic traff ic control.
 With this algorithm, the computational complexity of the dynamic traff ic control is
determined. It is much larger than the complexity of a static semaphore or full autonomy
approach with a complexity of ()3nΟ with n the number of vehicles. The dominating factor in
the computational complexity is the field effect analysis.
 The several sub-areas in the dynamic traff ic controller are easy to parallelise which may allow
implementation on cheap multi-processor or transputer systems. A parallelised algorithm for the
dynamic traff ic control was given.

The dynamic traff ic control as presented here has been implemented in a simulation tool. This
simulation tool shows that the ideas also work in practice (with a few minor modifications).
 All conflicts must be resolved eventually. To guarantee this, there must always be a subset of
knowledge rules in the system which can provide safe conflict resolutions for any possible
configuration.
 The neighbour request field effect analysis method performed better than motion field in the
simulations. The implemented neighbour request is a primitive form of the method presented in
this thesis.
 The simulation tool was suff iciently fast in an interpreted language (Python) to suggest that a
real-time controller in for example C++ is feasible.

7.1 Recommendations

A dynamic traff ic control is well scalable and can adjust to all kinds of situations, both expected
or unexpected. Adding or removing new vehicles or changes in the factory layout are possible
during run-time. Problem areas are avoided automatically.
 Automatic and robust avoidance of problems is not very pronunciated now. It can be
strengthened by adding autonomous deviation to the system. The autonomous deviation rule
should therefor be researched more thoroughly.
 The influence of different vehicle speeds is as of yet not investigated. Different vehicle speeds
occur frequently in real systems, just imagine an unloaded AGV and an AGV carrying 20 tons.
 The effect of vehicle shapes or coupled vehicles should be researched. This would allow
different kinds of vehicles or tightly co-operating vehicles which together are bigger, faster or
stronger.
 To provide a reliable implementation, rules should be extended to operate on non-straight
paths also.

Currently, the best field effect method available is neighbour request. The implemented version
is simplified, which lowers its performance. It is suggested that a better implementation using
blocking or advancing as cost estimation is made.

The convoy effect should be avoided. It leads to lower throughput. Unfortunately the convoy
effect is a self-amplifying effect. The flow control must enforce spreading. Functionali ty of the
factory should reflect this. Unfortunately, spreading of vehicles can also lead to unexpected
delays which ultimately can lead to a worse performance than without it.

The multivehicle co-ordination heuristic can probably be improved by using better estimations
of the best order to solve the conflicts. In [li t. 18] several methods are discussed.

Normal multivehicle deadlock prevention algorithms [li t. 8] that are based on fixed paths will
not work well without modification. What modifications are needed is as of yet unknown.
 Because the (local) paths of vehicles change quite often in a dynamic traff ic control, deadlock
prevention algorithms based on regular recalculation should be very fast.

Dynamic traffic control of free navigating automatic guided vehicles

- 77 -

Deadlock detection and prevention when using dynamic traffic control must be researched.
Together with autonomous deviation, a path planner and flow control, it can be added to the
simulation tool. This will allow more reliable and realistic tests.

The simulation tool contains some bugs which need to be removed (advancing not always
produces correct plans). The tracing of rule decisions in the simulation tool is not always very
clear. This should be improved.

Dynamic traff ic control of free navigating automatic guided vehicles

- 78 -

Literature

[1] A.L. Schoute, P.J. Bouwens: ‘Deadlock-free traff ic control with geometrical critical
sections’ , Proceedings CSN-94, (1994)

[2] A. Pellenkroft: ‘Path-planning and traff ic control for mobile robots within MART’,
Master thesis University of Twente, Computer Sciences, SPA, April 29, (1992)

[3] N. Ploeger: ‘Traff ic control methods using critical subpath collision avoidance’ , Master
thesis University of Twente, Computer Sciences, SPA, November 27, (1992)

[4] A.L. Schoute: ‘Planning strategy for coll ision free movement of multiple polyhedral
objects’ , Master thesis University of Twente, Computer Sciences, SPA, December,
(1993)

[5] P.J. Bouwens: ‘Traff ic control of mobile robots in the MART project’ , Master thesis
University of Twente, Computer Sciences, SPA, March 11, (1994)

[6] G.J. Steinfelder: ‘Design and implementation of a high-level control system with
visualization for the mart’ , Master thesis University of Twente, Computer Sciences,
December, (1994)

[7] H.W. Wonnink: ‘Deadlock detection and recovery in traff ic control of mobile robots’ ,
Master thesis University of Twente, Computer Sciences, SPA, August 22, (1995)

[8] N.W. Hibma: ‘Traff ic analysis for multiple AGV systems’ , Master thesis University of
Twente, Computer Sciences, SPA, January, (1997)

[9] J.Hopcraft, T.Schwarz, M.Sharir: ‘On the complexity of motion planning for multiple
independent objects; PSPACE-hardness of the warehouse man' s problems’ , Journal of
Robotics Research ,3(4):76 88, (1984)

[10] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen: ‘Object oriented
modeling and design’ , Prentice Hall , London, (1991)

[11] M. Lute: ‘Programming Python’ , O’Reill y & Associates Inc., Sebastopol, Cali fornia,
USA, (1996)

[12] Ming C. Lin, D. Manocha (eds.): ‘Applied computational geometry: towards geometric
engineering’ , WAC ’96, Philadelphia, Springer Verlag, London, May, (1996)

[13] D.F. Rogers: ‘Procedural elements for computer graphics’ , McGraw-Hil l Book
Company, New York, (1985)

[14] T.A. Sudkamp: ‘Languages and machines’ ,Addioson-Wesley, Amsterdam, January,
(1991)

[15] H. Kaindl: ‘Problemloesen durch heuristische Suche in der Artifical Intelli gence’ ,
Springer-Verlag, Wien, (1989)

[16] R. Keller: ‘Expert System Technology: Development & Application’ , Yourdon Press,
Englewood Cli ffs, New Jersey, USA, (1987)

Dynamic traff ic control of free navigating automatic guided vehicles

- 79 -

[17] KADS: ‘A principled approach to knowledge-based system development’ (G.Schreiber,
B. Wielinga, J. Breuker, eds.) volume 11 of the ' Knowledge-Based Systems' series ,
Academic Press, (1993)

[18] F. von Martial: ‘Coordinating plans of autonomous agents’ ,Springer-Verlag, Berlin,
(1992)

[19] Jaarverslag 1996 Centrum Transport Technologie, Rotterdam, (1996)

[20] A.J. de Graaff , M.P. Koster, J.M. Nauta, W. Oelen, D. Schipper, H.G. Tillema (Ed.),
‘MART: An overview of the Mobile Autonomous Robot Twente’ , University of Twente,
Memoranda Informatica 93-12, ISSN 0924-3755, feb 1993. (47 pages)

[21] H.G. Til lema, A.L. Schoute, ‘Mobile Autonomous Robot Twente: its transputer-based
control system’, Proceedings Transputer ’94: Advanced Research and Industrial
Applications, IOS Press, Sept. 1994, France, pp. 87-99, ISBN 90 5199 1797

[22] A. Silberschatz, J.L. Peterson, P.B. Galvin, ‘Operating system concepts’ , Addison
Wesley, 1994

Dynamic traffic control of free navigating automatic guided vehicles

- 80 -

Appendix A - Proofs and derivations

A.1 Roundabout

A.1.1 Time-loss and correctness full roundabout

Lemma 1 (phase difference ϕ equals angle of intersection α):

αϕ =

Proof:

By definition, both vehicles intersect at an angle α and deviate an equal angle β corresponding
to the tangent to the roundabout. Also by definition, the vehicles must rotate in the same
direction over the roundabout. This implies that the vehicles approach the roundabout under the
same angle of intersection.

Again, by definition, the new paths of both vehicles must be equally long. This implies that
both vehicles enter the roundabout at exactly the same moment under the angle of intersection,
thus

αϕ =
�

Lemma 2 (relation angle of intersection α and radius R):

=

2
sin

α
r

R (circular vehicles with radius r)

+=

2
cot

22

αlw
R (rectangular vehicles of size wl ×)

Proof:

α/2

r

R

π-α/2
r

Figure 55: Configuration of circular vehicles

Dynamic traff ic control of free navigating automatic guided vehicles

- 81 -

In figure 55 the configuration of circular vehicles on the roundabout is sketched. From this
figure we immediately derive

=

2
sin

α
r

R

For rectangular vehicles the configuration on the roundabout is drawn in figure 56. From this
figure we derive

2

2
2

tan
wR

l

−
=

α

⇒

+=

2
cot

22
αlw

R (see footnote13)

α

α/2

M

R

w/2

l/2

R

Figure 56: Configuration of rectangular vehicles

�

Definition 3 (average arrival distance):

2
21 dd

d
+

=

Lemma 4 (displacement of centre):

−

=
2

cot
2

12 αdd
f

Proof:
This follows directly from figure 57. The roundabout paths are by definition symmetrical. This
means each straight path can be written down as d1, 12 dd − , d1 as is done in the figure. The
point p on the orthogonal from midway of the new path to the centre of the roundabout exactly
divides the length 12 dd − in two because this line is also orthogonal to the old path.

�

13
sin

cos
cot =

Dynamic traffic control of free navigating automatic guided vehicles

- 82 -

β

β

R

Re

e

d1

d2-d1

d1

α

d1

f

l

s2

s1

M

p1

p2

γ
δ

f

path v2

path v1

Figure 57: Construction of roundabout

Lemma 5 (length e):

22 dfe +=

Proof:
Use Pythagoras in figure 18.

�

From figure 57 we also see that

=

e

R
arcsinγ and

=

e

f
arcsinδ and δγβ −= .

Thus

−

=

e

f

e

R
arcsinarcsinβ

The total path length of the roundabout, defined as Rl β22 + then becomes

Rlpath β22 +=

⇒

R
e

f

e

R
Repath

−

+−= arcsinarcsin22 22

Dynamic traffic control of free navigating automatic guided vehicles

- 83 -

Since the original path had length 2d and the paths are symmetrical, the average loss of time is

0,arcsinarcsin2 22 >÷÷
ø

ö
çç
è

æ
-÷

ø

ö
ç
è

æ
-÷

ø

ö
ç
è

æ
+-= βτ d

e

f

e

R
Reroundabout

�

A.1.2 Shrunken roundabout
Lemma 6 (shrunken roundabout):

R

RdRd

d

R

d

R
22

1
22

2

21

arcsinarcsin

+÷÷
ø

ö
çç
è

æ
+÷÷

ø

ö
çç
è

æ
-=αϕ

Proof:

v2
v1

t1

t2β2 β1

α
R

R

γ

ϕ

d1

d2

Figure 58: Construction shrunken roundabout

In figure 58 the construction of the shrunken roundabout is displayed. Using this graphic we
define and derive ϕ. We assume 21 dd £ .

From the graph we see

÷÷
ø

ö
çç
è

æ
=

1
1 arcsin

d

Rβ

÷÷
ø

ö
çç
è

æ
=

2
2 arcsin

d

Rβ

22
11 Rdt -=

22
22 Rdt -=

ti is the length of the tangent from the start position to the roundabout of vehicle vi. As usual βi

is the deviation from the original path. Because 21 dd £ we have 21 tt £ . We derive

Dynamic traff ic control of free navigating automatic guided vehicles

- 84 -

R

tt 12 −
=g

the arc v1 can drive on the roundabout before v2 enters.

In the picture we see

() gbbaj +−+= 12

⇒

R

RdRd

d

R

d

R
22

1
22

2

21

arcsinarcsin
−−−

+

+

−= aj

�

A.1.3 Advancing roundabout
Table 4 shows the results of a numerical approximation of the advancing roundabout using

circular vehicles and angle of intersection
2
p

a = . The relative arrival distance is assumed to be

zero. Both vehicles have radius r. The distances to the epicentre are expressed in r. The value of
the optimum for R and the average time-loss are also expressed in r. For d1 and d2 larger than 3r

the results indicate that the optimum R equals 2 . Since this is the usual configuration of a full

roundabout for circular vehicles at angle
2
p

a = , these are not displayed.

The results were obtained by using a small custom-made program optavr. It is a small C
program. The source code is available on the floppy disk that goes with this thesis report.

d1 and d2 optimum R average time-loss
1.414214 1.008 1.4197

1.5 1.12 1.2405
1.75 1.156 1.0964
2.0 1.202 0.9841
2.25 1.252 0.8916
2.5 1.302 0.8126
2.75 1.362 0.7428

3 1.414215 0.6800
Table 4: Results of advancing roundabout

Dynamic traff ic control of free navigating automatic guided vehicles

- 85 -

A.2 Time-loss and correctness blocking

A.2.1 Rectangular vehicles

α/2

α/22

w

d

2

l

2

l

2

απ −

Figure 59: Construction blocking

In figure 59 we see a typical blocking situation with a sharp angle of intersection. In the

magnified area we see a more exact picture. The waiting vehicle has to wait
2
l

 before the

critical area.

d is the distance from the border of the critical area to the epicentre. Both parts of the critical
area are symmetrical. For d we derive

()
α

α
α

απ

sin2
cos1

2
sin2

2
sin

+=

 −

= w
w

d

So the average time-loss becomes

()

∈++=

2
..0,

sin2
cos1

2
πα

α
ατ wl

block

For
2
πα > the triangle and thus the angle

2
α

becomes invalid and we must use απ − which

gives

()α
α

απ

α

cos12
sin

2
sin2

2
sin

+
=

 −

= w
w

d

Dynamic traffic control of free navigating automatic guided vehicles

- 86 -

So in total the average time-loss becomes

()

()

∈

+
+

∈++

=
ππα

α
α

π
α

α

τ
..

2
,

cos12

sin

2

2
..0,

sin2

cos1

2
wl

a
wl

block

⇒

∈

+

∈

+

=
ππαα

παα

τ
..

2
,

2
tan

22

2
..0,

2
cot

22
wl

wl

block

�

A.2.2 Circular vehicles
The proof for average blocking time-loss of circular vehicles is exactly equal to that of average
blocking time-loss of rectangular vehicles if for w and l, 2r is substituted.

A.3 Time-loss and correctness advancing

A.3.1 Circular vehicles
Assume the collision area in the configuration diagram of advancing is ellipsoid. It is centred
around (s1,s2)=(0,0).

s1

s2

0

p

s2
w

s1

Figure 60: Configuration diagram

()π π α− −

2

π-α

α
2r

s1

s2

p2

p1

Figure 61: Width axis

Dynamic traffic control of free navigating automatic guided vehicles

- 87 -

From figure 60 and figure 61 we derive the width axis

w
r=

2

2
cos

a

From this configuration point p and onward, the vehicles can both drive at topspeed without
colliding. In the graph this can easily be seen because the edge of the collision area is more
steep than 12 ss = .

In point p we have (derived from the figures above)

s
r

1

2

=

cos

a

and

=

2
cos

2 a
r

s

Which means that the average loss equals

=

2
cos

a
t

r
advancing

�

A.3.2 Rectangular vehicles

v2

v1

l/2

a/2

x

w/2

Figure 62: Advancing with rectangular vehicles

Dynamic traff ic control of free navigating automatic guided vehicles

- 88 -

Using figure 62 and the proof of blocking for rectangular vehicles, we see that v2 can advance
up to the state depicted in the figure. From then on, it can continue driving at maximum speed.

In the depicted state we find

÷
ø

ö
ç
è

æ -

÷
ø

ö
ç
è

æ

×=

2
sin

2
sin

2 απ

α
w

x

and thus for the distance d of v1 to the epicentre

÷
ø

ö
ç
è

æ -

÷
ø

ö
ç
è

æ

×+=

2
sin

2
sin

22 απ

α
wl

d

Þ

÷
ø

ö
ç
è

æ×+=
2

tan
22

αwl
d

�

A.3.2.1 Advancing equals blocking

v2

v1

Figure 63: Advancing equals blocking

This can easily be seen in figure 63 which shows the advancing and blocking configuration
with a wide angle of intersection. v2 must wait until v1 has completely left the critical area
before it can start to move. Otherwise it wil l either hit or block the other vehicle.

�

Dynamic traff ic control of free navigating automatic guided vehicles

- 89 -

Appendix B - Manuals

B.1 Programmer’s manual to Roadplan v2.0

This programmer’s manual is meant for programmers who want to work on Roadplan v2.0. It
contains a number of guidelines and explanations of the source code. It also contains some
Python [lit. 10] code examples. If you do not know how to work with Roadplan v2.0, please
read the user manual in appendix B.2 first.

Roadplan v2.0 is written in Python 1.4 using Tk 4.2. To run the program, a computer with
Python/Tkinter installed is needed. A good ASCII editor with auto-indent is a pre. First a short
introduction to Python is given.

B.1.1 Python introductory course
Python code is line-based, meaning that a newline is the end of a statement. Parameters for a
function call are not line-based and can be on several li nes of code. Several character have
special meaning. ‘#’ characters are used to declare that the rest of the line is comment. Tab and
‘ :’ characters are used to denote functional blocks or scopes as can be seen in the example
below. Names are strings of alphanumerical characters and underscores. Names in between
double underscores are special system names. Python is case-sensitive.

Python programs exists of one or more modules. One module can use functions from other
modules by declaring the module with an i mpor t or f ro m <modul e> i mpor t
<i t ems> statement like in Modula-2.

A module can define variables, functions and classes. A variable is defined by assigning a value
to it. Once a value has been assigned to a variable it cannot be assigned a value of a different
type. This is called weak typing. Functions are defined using the def statement. Classes are
defined using the clas s statement. For example:

def a dd(a, b):
re t ur n a +b

or

cl ass f r og:
def _ _i ni t __(sel f , col or):

se l f . col or =col or

def l eap(sel f):
pr i nt “ Jump a r ound! ”

As can be seen in this example, r et ur n is used to let a function or method return a value. This
can be any value of any type legal in Python (will be discussed shortly). Methods are defined
like functions, but are part of a class definition. Parameters are declared after the function name
between brackets. The first parameter of methods must always be self . se lf is the
identification of the calli ng object instantiation. The special method __i ni t __ is the class
constructor. Variables that are assigned using sel f in a method of a class automatically belong
to it.

Dynamic traffic control of free navigating automatic guided vehicles

- 90 -

Python has a number of build-in types. Numerical types are integers (default), floats and
unlimited precision integers (not used in Rp2). Numerical types can be used intermingled and
integers are automatically converted to floats if an operation uses both. Strings are contained in
single or double-quotes and must be ended by the same character they were opened with. Set
and set related types are tuple, list and dictionary. A list can contain any Python value and all
types can be present in one list. This is also true for tuples and dictionaries. A dictionary is a
non-ordered set with values that can be retrieved by key. A special typeless value is None.

Examples of assignments:
a=1 # i nt eger
a=1.5 # f l oat
a=’ 123’ # st r i ng
a=(1, 2, 3) # t uple
a=[1, 2, 3] # l i st
a={ ‘ 1’ : 1, ’ 2’ : 2, ’ 3’ : 3} # di ct i onar y: k ey (s t r i ng) , v al ue
a=None # speci al t ypel ess v al ue

Several standard modules are provided, like Tkinter for GUI facilities. File I/O is not a build-in
type, but is supported in a standard module which is always loaded.

Variables, functions and methods are called by their names if in the current scope or are
preceded by their location if not in the current scope. Class methods and variables are never in
the current scope and must be preceded by se l f or by the instance name.

Enumerations over lists are very straight forward, for example:
fo r p er son i n c i t y:

pr i nt p er son. naam

B.1.2 Programming model
To program Roadplan v2.0 several assumptions had to be made.

The most important assumption is that time is simulated by discrete points separated by fixed
intervals. This leads to inaccuracies and incompatibilities. For example, the multivehicle co-
ordination is not designed for discrete time but continuous time. Some workaround must be
programmed to solve this.

Another important aspect is the fact that advancing and roundabout only work for straight
paths. However, by combining roundabout and advancing and providing curved paths,
situations could arise where a rule must be applied but the theory is not yet capable to solve it.

Two parameters of the simulation model are for handling time: loo kahead and gr i d.
lo okahead is the time which the simulation looks ahead to predict collisions and solve
problems. gr i d is the fixed interval between discrete points in time.
 A third parameter r ange is used as field range for the neighbourhood.

Speed is binary: a vehicle is stopped or driving at full speed. Using speed complicates the
program unnecessarily. The discrete approach of time emulates speed if the step size is small
enough. Most data structures where speed could be used are programmed to hold speed
attributes, but they are simply not used.

Dynamic traffic control of free navigating automatic guided vehicles

- 91 -

B.1.3 Source structure
Roadplan v2.0 is build using the functional and object model presented in chapter 5 in Python
modules. Each object is contained in a single Python module. Most modules contain one object
or one distinct functional part of the program. In table 5 each module is named and explained
shortly. The modules in the available source code which are not mentioned here are not
supported anymore (ellips, planpath, several test modules).

advancing The advancing rule.
area Basic area class.
avoidance A rule to avoid imminent collisions.
circle Definition of a circle.
circvehicle The circular vehicle
colcheck Several collision prediction algorithms.
coldiag Collision diagram generation.
compoundsegment Definition of compound segment.
curvesegment Definition of curved segments.
draw Draw items to be used in drawings.
drawman Draw manager object. Provides zooming and scrolling.
drawmath Some numeric manipulation functions.
execpath Definition of executable path.
flexfile Provides easy file I/O for MS-DOS and UNIX.
freearea The free area class.
guitools Several GUI extensions.
map Definition of the map class.
motionfield The motion field method.
multiedit Compound item editor.
neighbours The neighbour request method.
occparea The occupied area class.
overlap Overlap of items test function.
pilotpath Definition of path-planner generated paths.
polygon Definition of a polygon.
position Definition of a 2-dimensional position.
prefarea The preferred area class.
rasegment Roundabout segment.
rectangle Definition of a rectangle.
rectvehicle The rectangular vehicle.
regman Registration manager to manage classes.
resolve The multivehicle co-ordination.
resvarea The reserved area class.
roundabout The roundabout rule.
rp2 Roadplan 2 start-up module.
rp2sys Simulation step.
rule Basic rule class definition.
segment Basic (straight) segment class definition.
settings Simulation settings.
shape Basic shape definition.
sharedfunc Some general shared functions.
vehicle Basic vehicle definition.
waitsegment Definition of the wait-segment.
winman The window manager. Roadplan main module.

Table 5: Roadplan 2 modules

Dynamic traff ic control of free navigating automatic guided vehicles

- 92 -

B.1.3.1 Start-up and registration

rp2 is the start-up module. Roadplan v2.0 is started by

python rp2.py

The start-up module loads all wanted classes when run to initialise the registration manager
(regman). The registration manager holds load and creation methods of each class that can be
created or loaded by the user. Each class must declare that it wants to be added to the
registration manager (see below). Registration managers are created for all constructors (called
constructors), all l oaders (called loaders) and several functionally identical classes,
like all different types of vehicles (called vehicles).

if not __name__=="__main__":
startup sequence
 regman.constructors.Add(Vehicle.__name__,Vehicle)
 regman.loaders.Add(Vehicle.__name__,load)
 regman.vehicles.Add(Vehicle.__name__,Vehicle)

This piece of example demonstrates how to code a startup sequence in a module which registers
the vehicle class.

B.1.3.2 The window manager (GUI)

In winman.py the main window and menus are programmed. This is done using Tkinter. The
module also provides basic I/O co-ordination like load, save and merge and on-screen display.
All functions are defined as methods of the class WinMan. In method SimulateDo the
simulation step in rp2sys is called. This is the function SystemMove which needs the map
and the simulation settings as input.

WinMan works close together with the graphics display module draw and the classes
DrawMan and Map.

If a Map x is saved in the window manager, a file named x.map.settings is saved as well .
This small file holds the current settings corresponding to the map. Next time the map is
opened, the settings are automatically reloaded.

If Rp2 is quitted by using the Quit menu item, Rp2 asks if the currently used map needs to be
saved. If positive, the map will be reloaded automatically on start-up during the next session.
This information is stored in the file rp2.ini which must be in the current directory. If it cannot
be found, an empty map is used.

B.1.3.3 The simulation code

SystemMove finds all possible coll isions by calli ng PredictCollisions in the
colcheck module. A dirty bit is used to reduce the scanning to the most distant time step if
possible. PredictCollisions returns a list of tuples (ttc,v1,s1,v2,s2) where ttc is the time to
collision, vi is vehicle i, and si is the offset of vehicle i in the map.

The earliest coll ision is resolved and all other collisions that are related to it are removed from
the coll ision list. This is done until no more collisions are in the list.

Dynamic traff ic control of free navigating automatic guided vehicles

- 93 -

Coll ision avoidance is applied until no more imminent collisions exist. Collision avoidance
looks ahead only one simulation step and determines which vehicle must be stopped to prevent
an imminent collision. An imminent coll ision is a coll ision which would occur in the next
simulation step. The coll ision avoidance is needed because time is simulated in steps and the
multivehicle co-ordination strategy does not guarantee that all possible coll isions are resolved
in one step.

B.1.3.4 Implementation of advancing
To prevent the implementation from using the coll ision avoidance very often, the advancing
was extended beyond the theory presented in this thesis.
 It has been made suitable for any-shape paths. This was done by finding a collision free
trajectory in the collision diagram. It was assumed that the collision area forms a convex shape
in the collision diagram.
 To find the advancing trajectory, the algorithm tries combinations (s1,s2)=(time to collision -
grid,t) and increases t until the combination does not give a collision anymore. This gives the
time period which the second vehicle has to wait until it can advance. Note that a new conflict
may appear immediately after this advance step. The advancing resolution is then executed
again.

To prevent the rule from entering mutual deadlock areas, an addition to the algorithm was
made. The mutual deadlock prevention is not guaranteed and can make errors. This was done to
simplify the prevention test, thereby greatly improving its execution speed. It is assumed that
vehicles are rectangular.
 All states (s1,s2)=(ttc - n⋅grid ... ttc + n⋅grid, ttc - n⋅grid) are tested for collision. Starting at
n=1 (n=0 is the actual conflict) we work backwards to the current states of the vehicles. The
minimal n for which no coll isions are found in the given interval determines the place where v2

should wait to avoid mutual deadlock. This should be the state where the coll ision area has
reached its minimum at (s1,s2)=(ttc + n⋅grid, ttc - n⋅grid).
 Clearly, if local minima or strange ‘drops’ exist in the coll ision area, the algorithm does not
perform well.

B.1.3.5 The overlap test functions
The Overlap function in module overlap used to check for collisions is divided in four
parts.

The test for circle with circle overlap tests if the distance from centre to centre is larger than the
sum of the radius of the circles.

The test for polygon with circle converts the circle to a horizontal line (distance to centre of
circle) and the edges of the polygon to paraboles relative to the circle (also distance to the
centre of the circle). The parabole may not cut or be below the horizontal line.

Polygon with polygon overlap test is done by testing each line against each line in the other
polygon. For rectangle vehicles the very fast Cohen-Sutherland algorithm [li t. 13] has been
implemented.

Known problems are the inabili ty of the polygon-polygon and polygon-circle overlap tests to
find completely enclosed objects in the polygon. However, these situations are rare and posed
no problems during simulations.

Some of the most important classes will now be explained.

Dynamic traff ic control of free navigating automatic guided vehicles

- 94 -

B.1.3.6 Map

Map is the programmed site layout class. It inherits from FreeArea and has four new
attributes: areas, vehicles, paths and rules. All are lists and contain the objects in the
system. The first three are physical objects in the system and thus also contain position offsets.

Map provides the main storage of the layout. On the other hand it also provides most of the
GUI. Roadplan v2.0 can handle one Map at a time. This single Map is displayed on a DrawMan
in the main screen. Map sees to it that its display can be manipulated in an interactive way by
providing mouse event triggers linked to the displayed objects and the actual stored objects.

B.1.3.7 Vehicle
Vehicle implements the basic vehicle class. A Vehicle has two plans: the original plan in
planpath, which is a PilotPath, and the executable plan in execpath, which is an
ExecPath.

Prediction of the future state of a vehicle is done with method planat(self,f):Vehicle.
f is a fraction of the total executable path’s length. The method returns a Vehicle with all
important attributes filled.

Performing a move is done with method drive(self,spd). spd is the number of steps the
vehicle may move in its executable path.

B.1.3.8 Path

Roadplan v2.0 has two kinds of paths: PilotPath and ExecPath. The first does not contain
any temporal information. The second does contain this kind of information (though it is not
used in the current version) and can contain wait periods.

Both have methods to find direction and position on a certain fraction of the path,
at(self,f):Position and angleat(self,f):float.

B.1.3.9 Positions and offsets
Positions and offsets are not known by the objects themselves. The object holding them assigns
meaningful semantics to a position or offset and should therefor also provide the position or
offset. For example, the Map class positions vehicles inside it. A vehicle does not know this,
but it does know its offset relative to its start.

B.1.3.10 File I/O
Each class must take care of its own file in- and output. Each class defines a method
.save(self,f) where f is the file to write to. Loading is done by a registered
load(f):object function. Part of the file I/O can be passed on to contained objects.

Output to and input from the file is done with module flexfile which implements a class
flexfile. This class can read and write MS-DOS and UNIX ASCII formats.

The file output must begin with the name of the class. This name is used by classes higher in
the load hierarchy to pass parts of the load procedure to other classes.

Dynamic traffic control of free navigating automatic guided vehicles

- 95 -

For example the load function and sa ve method of re ct angle .

def l oad(f) :
f or mat = c l assname < nl > l engt h < nl> wi dt h < nl >
or i ent at i on < nl >

l= f . r eadl i ne()
w=f . r eadl i ne()
n=Rect angl e(l , w)
re t ur n n

def s ave(sel f , f):
f or mat = c l assname < nl > l engt h < nl> wi dt h < nl >
 f . wr i t el i nes(sel f . __cl ass__. __name__, sel f . l engt h, sel f . wi dt h)

B.1.3.11 Screen display
Screen display, like file I/O, is handled by each object itself or passed on to lower level objects.
The object constructs a dr awi ng or pai nt i ng or returns a draw primitive from its method
di spl ay(sel f , scr , at) . A dr awi ng or pai nt in g consists of a number of draw
primitives. A pai nt i ng has interactive facilities while a dr awi ng has not. Once constructed
a dr awi ng or pai nt i ng can be displayed on a Tk canvas (or Dr awMan in Rp2). These
classes can be found in the module draw .

B.1.3.12 Other GUI tools
The module gui t ool s holds extensions to the Tkinter GUI classes. gui t ools defines
wi ndow, f r ame, l abel , but t on, ent r y , check , r adio , li s t box , sel ect i on ,
hold , accept , l ooseaccept and re quest . These are all explained well in the source
code.

B.2 User manual to Roadplan v2.0

Roadplan v2.0 can be used to simulate a dynamic traffic controller. It is an experimental tool.
Starting Roadplan v2.0 is done by

py t hon r p2. py

Any number of vehicles can be placed in the map and be given a path to follow. Two
knowledge rules can be switched on or off: advancing and full roundabout. The field effect
resolvement method used is neighbour request.

Circular and rectangular vehicles are well supported, other shapes such as free-shape polygons
or ellipses cannot always be used because the theory is not available to handle them properly.
Avoid their use.

Areas can be drawn in the map, but are completely ignored otherwise. The same goes for
pilotpaths not related to vehicles.

When started Rp2 opens the main window. The main window shows a map view and holds the
pull-down menus in the upper bar. The map view can be manipulated with the zoom scale and
the two scroller bars next to it.

There are five menus: Fi l e, Edi t , Si mul at e, Test and Hel p. The Help menu has not
been implemented yet.

Dynamic traff ic control of free navigating automatic guided vehicles

- 96 -

The File menu has five items: New (start with empty map), Open (load from file), Save
(save to file, but only persistent information), Merge (merge map from file into current map)
and Quit (quit Rp2).
 If you quit Rp2 you wil l be asked to save the current map. If you do so it wil l be reloaded
automatically next time you start Rp2.
 When a map is saved, a settings file containing the current simulation settings is also saved. It
is loaded automatically when the map is loaded.

The Edit menu has one item, Show, and two submenus: Add and Delete. Click Show to
redraw and update the map. Add and Delete both have four items: Area, Vehicle, Path
and Rule which add or delete an object of that type.

The Simulate menu has five items: Start, Step, Stop, Reset and Settings. Start
starts the simulation, Step does one simulation step, Stop stops it and Reset resets the
vehicles and their paths to the original state. With Settings you can change the settings
needed in the simulation. These are lat, grid and range respectively for the lookahead
time, the time fineness grid and the neighbour range. The lookahead time is the time in which
collisions are predicted. The time fineness grid represents the time interval of simulation steps.
The range is the neighbourhood range rf.

The Test menu has two items Overlap and Diagram. Use Overlap to test if two objects
are overlapped14. Use Diagram to generate a coll ision diagram of two vehicles.

During a simulation run, a simulation step will start by printing the number of the iteration.
Next, all predicted coll isions and their time to coll ision are printed. Then, one is chosen and the
added knowledge rules evaluate and present their plans. Their cost is modified by the neighbour
request field effect method. The best rule is selected and executed. At the end of each
simulation step the map view is updated. Executable vehicle paths are shown in blue while
original plans are displayed in black. Red dots represent waiting times. Vehicles ping-pong
along their route. When the end is reached the finish time is displayed and the vehicle starts
over with the original path.

All items on the map view can be selected by moving the mouse pointer over them. The
selected item turns red. Dragging is performed by holding the left mouse button15 while
dragging. Release the button to stop dragging. Editing an object is done by double-clicking with
the left mouse button on the selected item. Right clicking once in the map view performs a view
update, like the Edit Show menu item.

Editing an item can always be cancelled by either clicking the Cancel button or by destroying
the edit window. Some items open an interactive window to draw in. The same buttons work
here in the same way. Sometimes the view is not centred right; scroll around a bit to solve this.
 Note that the mouse buttons also work during a simulation run. However, view updates can be
very slow during a simulation run.

When a vehicle is created the shape is undetermined. When editing the shape you wil l first be
asked to select one of four possible shapes. Use circle or rectangle for best results. Once a shape
is selected it can still be edited, but its type cannot be changed.

Whenever a listbox is displayed, double click the left mouse button to select an item.

14 This menu item was meant for test purposes and is now disabled.
15 Mouse buttons can be defined different on some computers.

Dynamic traffic control of free navigating automatic guided vehicles

- 97 -

Index

A
advancing, 26

time loss, 26
agents

co-operating, 18
AGV, 10

transport system, 10
angle of intersection, 22
architecture

centralised, 63
collision prediction, 52
computational complexity, 61
co-ordination, 52
dispatcher, 52
distributed, 63
executioner, 52
field effect, 52, 53
functional model, 52, 53
knowledge base, 52, 53
object model, 54
real time, 63

area, 12
free, 12
occupied, 12
preferred, 12
reserved, 12

arrival distance, 22
relative, 22, 28
relative, full roundabout, 31

B
blocking, 24

time loss, 25

C
capability mapper, 14
collision

diagram, 23
prediction, 19, 52

computational complexity
architecture, 61
optimum, 15
path planner, 12

conflict, 18
bilateral, resolution, 22

co-ordination
dispatcher, 52
executioner, 53
multivehicle, 52
simulation, 72

cost function, 20
crossing, 18

D
deadlock, 13, 20

deviation, 34

dynamic, 20
mutual, 23, 72

demerging, 13

E
epicentre, 22
evaluation

run-time, 19

F
factory layout, 10, 12
field effect, 17, 40

architecture, 53
motionfield, 41
neighbour request, 43, 72

flow control, 13, 49
free-ranging, 10

I
intersection. See epicentre

K
knowledge base, 53
knowledge rule, 18

L
layout, 18
lookahead time, 52

M
map, 18
MART, 10
merging, 13
multivehicle

co-ordination, 48

N
network congestion, 13

O
object model

area, 56
attributes, 54
classes, 54
co-ordination, 61
inheritance, 55
map, 60
methods, 54
path, 57
relation, 54
rule, 59
segment, 57

Dynamic traffic control of free navigating automatic guided vehicles

- 98 -

shape, 55
vehicle, 56

optimisation
global, 40
local, 22

P
path, 12, 18
plan, 18
planner

logistic, 12
path, 12

proof
advancing, 86
advancing roundabout, 84
blocking, 85
full roundabout, 80
shrunken roundabout, 83

Python, 66
introduction, 89

R
real time, 63

parallel processing, 63
resolution methods

advancing, 26
advancing roundabout, 32
blocking, 24
comparing, 34
deviation, 33
full roundabout, 28
roundabout, 28
shrunken roundabout, 31
swirl, 32

resources
allocation, 19

roundabout, 28
advancing, 32
deviation, 28
full, 28
full, deviation, 30
full, radius, 29
full, time loss, 31
phase difference, 28
shrunken, 31

S
segment, 13
simulation, 65

example, 68
model, 67
results, 72
tool. See tool

site, 18
Smagic, 11
stream, 18, 43

creating, 43
crossing. See stream crossing
inserting, 43
removing, 43

stream crossing, 44
batch, 45
carousel, 45
conclusions, 47
twist, 46

T
time loss, 22
tool, 65

compatibility, 65
manual, programmer, 89
programming, 90
source structure, 91
user manual, 95

traffic
local, 13

traffic control, 13
dynamic, 16
full autonomy, 16
semaphore approach, 15

trajectory, 18
advancing, 27
deviations, 19

Turingmachine, 15

V
vehicle, 18

leading, 23
trailer, 23

vehicle control, 14

